Analysis Qualifying Review. January 12, 2013

Morning Session, 9:00 am - 12:00 noon

1. Let f be a continuously differentiable function on $\mathbb R.$ Assume there exist constants $a,b\in\mathbb R$ such that

 $f(x) \to a$, $f'(x) \to b$ as $x \to \infty$.

Prove or give a counterexample: b must be zero.

2. Using techniques of real analysis (as opposed to complex analysis) show that

$$\lim_{R \to \infty} \int_0^R \frac{\sin x}{x} \, dx = \frac{\pi}{2}$$

Hint: compute $\int_0^\infty e^{-xt} dt$ first.

3. Let f be a measurable function on a measure space (X, μ) , where μ is a finite measure. Suppose there are constants K > 0 and p > 1 such that

$$\mu \{ x \in X : |f(x)| > M \} < \frac{K}{M^p} \text{ for all } M > 0.$$

Prove that f is integrable.

4. Let E be a measurable subset of [0, 1]. Assume there is a constant $\alpha > 0$ such that

 $m(E \cap I) \ge \alpha m(I)$ for all intervals $I \subset [0, 1]$.

(Here $m(\cdot)$ denotes Lebesgue measure.) Prove that m(E) = 1.

5. Let $(f_n)_{n=1}^{\infty}$ be a sequence of non-negative measurable functions on a measure space (X, μ) , where μ is a finite measure. Assume that f_n converges almost everywhere to an integrable function f.

(a) Show by example that in general $\lim_n \int f_n d\mu$ may be infinite.

(b) Suppose $\lim_{n \to \infty} \int f_n d\mu = \int f d\mu$. Prove that $f_n \to f$ in L_1 , that is

$$\lim_{n} \int |f_n - f| \, d\mu = 0.$$

Analysis Qualifying Review. January 12, 2013

Afternoon Session, 2:00-5:00

- (1) Let Δ denote the unit disk $\{z \in \mathbb{C} : |z| < 1\}$, let H denote the right half-plane $\{z \in \mathbb{C} : \operatorname{Re} z > 0\}$ and let f be an analytic function mapping H into Δ and satisfying f(5) = 0. Based on the given information, what are you able to say about f'(5)?
- (2) Let f = u + iv be an entire function with the property that $(u^2)_{xx} + (u^2)_{yy}$ vanishes identically along the real axis. (The subscripts denote partial derivatives.) What can you conclude about f?
- (3) Find all solutions of $\cos z = 1 + 100z^2$ in the unit disk |z| < 1.
- (4) Let S denote the strip $\{z = x + iy : 0 \le y \le 1\}$. Suppose that f is analytic in a neighborhood of S and satisfies $|f(x + iy)| \le \frac{C}{1+x^2}$ on S for some constant C.
 - (a) Show that

$$I(t,y) \stackrel{\text{def}}{=} \int_{\mathbb{R}} f(x+iy)e^{-ixt} \, dx$$

is a well-defined bounded continuous function of $(t, y) \in \mathbb{R} \times [0, 1]$.

- (b) Under what conditions will |I(t, 1)| be bigger than |I(t, 0)|?
- (5) Construct a function f(z) analytic for 0 < |z| < 1 so that $e^{f(z)}$ has a pole at z = 0, or else explain why no such function exists.