Analysis Qualifying Review, January 11, 2014

Morning Session, 9:00 am-noon

Notation: m denotes Lebesgue measure

- (1) Prove or disprove: If E is an open subset of \mathbb{R} with m(E) = 1 then there is a finite union of intervals F containing E with m(F) < 1.1.
- (2) Let $f \in L_1 \cap L_4$ (on some measure space). Prove that the function

$$1,4] \to \mathbb{R}$$
$$p \mapsto \|f\|_p$$

is continuous.

- (3) Find all $q \ge 1$, such that $f(x^2) \in L_q((0,1), m)$ for any $f(x) \in L_4((0,1), m)$.
- (4) Let

$$E \subset \{ (x, y) \mid 0 \le x \le 1, \ 0 \le y \le x \}$$
$$E_x = \{ y \mid (x, y) \in E \}$$
$$E^y = \{ x \mid (x, y) \in E \}$$

and assume that $m(E_x) \ge x^3$ for any $x \in [0, 1]$.

- (a) Prove that there exists $y \in [0, 1]$ such that $m(E^y) \ge \frac{1}{4}$.
- (b) Prove that there exists $y \in [0,1]$ such that $m(E_y) \ge c$, where c > 1/4 is a constant independent of E. Give an explicit value of c.
- (5) Let $E \subset [0,1]$ be a measurable set, $m(E) \ge \frac{99}{100}$. Prove that there exists $x \in [0,1]$ such that for any $r \in (0,1)$,

$$m(E \cap (x-r,x+r)) \ge \frac{r}{4}.$$

Remark: One approach to this problem involves the Hardy-Littlewood maximal inequality.

Analysis Qualifying Review, January 11, 2014

Afternoon Session, 2:00-5:00 pm

Notation: $\mathbb{D} = \{z : |z| < 1\}$

- (1) Find all entire functions f(z) with the property that $g(z) \stackrel{\text{def}}{=} f(2z + \overline{z})$ is also entire.
- (2) How many zeros does the polynomial

$$p(z) = z^8 + 10z^3 - 50z + 1$$

have in the right half-plane?

- (3) Does there exists an analytic function f with an essential singularity at 0 such that $f(z) + 2f(z^2)$ has a removable singularity?
- (4) Let $\{f_n : \mathbb{D} \to \mathbb{C}\}_{n=1}^{\infty}$ be a sequence of analytic functions such that $f_n(0) = 0$ for all $n \in \mathbb{N}$, and $\operatorname{Re} f_n(z) \to 0$ uniformly on compact sets. Prove that $\operatorname{Im} f_n(z) \to 0$ uniformly on compact sets.
- (5) Use complex integration methods to compute $\int_0^\infty \frac{x^t}{(x+1)(x+2)} dx$, where $t \in (0,1)$.