Analysis Qualifying Review, May 8, 2014

Morning Session, 9:00 am-noon

Notation: $\mathbb{D} = \{z : |z| < 1\}$

- (1) Prove that there exists an analytic function $f : \mathbb{D} \to \mathbb{D}$ such that f(1/2) = f(-1/2)and $f'(z) \neq 0$ for all $z \in \mathbb{D}$.
- (2) Let f be a polynomial such that

$$|f(z)| \le 1 - |z|^2 + |z|^{1000}$$

for all $z \in \mathbb{C}$. Prove that $|f(0)| \leq 0.2$.

(3) Let $f_k : \mathbb{D} \to \mathbb{C}$ be a normal family of analytic functions and let $h_k : \mathbb{D} \to \mathbb{D}$ be analytic functions satisfying $h_k(0) = 0$. Prove that the functions

$$g_k(z) = f_k\left(h_k(z)\right)$$

form a normal family.

(4) Let

$$\Omega_1 = \mathbb{C} \setminus \left(\{0\} \cup \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \right)$$

and

$$\Omega_2 = \mathbb{C} \setminus \{ z : \operatorname{Im} z = 0, |\operatorname{Re} z| \ge 1 \}.$$

Construct a non-constant analytic function $f: \Omega_1 \to \Omega_2$ or show that this is impossible.

- (5) Let f(z) be the branch of $\sqrt{z^2 1}$ on |z| > 1 satisfying $\lim_{z \to \infty} \frac{f(z)}{z} = 1$.
 - (a) Determine the coefficients $\alpha, \beta\gamma, \delta, \varepsilon$ in the Laurent expansion

$$f(z) = \alpha z + \beta + \gamma z^{-1} + \delta z^{-2} + \varepsilon z^{-3} + \dots$$

(b) Compute
$$\int_{|z|=2} (5+6z+7z^2)f(z) dz$$

Analysis Qualifying Review, May 8, 2014

Afternoon Session, 2:00–5:00 pm

Notation: m denotes Lebesgue measure

- (1) Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Prove that the set of points where f is differentiable is measurable.
- (2) Let f_1, f_2, \ldots, f, g be measurable functions on a measure space (X, \mathcal{A}, μ) . Assume that $f_n \to f$ in measure and $f_n \leq g$ a.e. Prove that $f \leq g$ a.e.
- (3) Let q_1, q_2, q_2, \ldots be an enumeration of $\mathbb{Q} \cap [0, 1]$ and let $r, t \in (0, 1)$. Consider the set

$$E \stackrel{\text{def}}{=} \left\{ x \in [0,1] : \sum_{j=1}^{\infty} t^j |x - q_j|^{-r} < \infty \right\}.$$

- (a) Show that $E \neq [0,1] \setminus \mathbb{Q}$.
- (b) Show that $m([0,1] \setminus E) = 0$.

(4) For
$$f \in L^1(\mathbb{R}, m)$$
 let $Tf(x) = \int_{x-1}^{x+1} f \, dm$.

- (a) Show that if Tf = 4f a.e. then f = 0 a.e.
- (b) Does the conclusion of (a) still hold if we only assume that f is integrable on each bounded interval in \mathbb{R} ?
- (5) Prove that the sequence

$$f_n(x) = n^{1/2} \exp\left(-\frac{n^2 x^2}{x+1}\right)$$

converges in $L_p([0, +\infty), m)$ for $1 \le p < 2$ and diverges for $p \ge 2$.