Analysis Qualifying Review, January 10, 2015

Morning Session, 9:00 am-noon

Notation: m denotes Lebesgue measure, m^* is the Lebesgue outer measure

(1) Let f be a nonnegative measurable function on (0, 1). Assume that there is a constant c, such that

$$\int_0^1 (f(x))^n \, dx = c, \qquad n = 1, 2, \dots$$

Show that there is a measurable set $E \subset (0, 1)$, such that

$$f(x) = \chi_E(x)$$
, for a.e. $x \in (0, 1)$.

(2) Let f be locally integrable on \mathbb{R}^n , 1 . Show that the following are equivalent: $(1) <math>f \in L^p(\mathbb{R}^n)$;

(2) there exist M > 0, such that for any finite collection of mutually disjoint measurable sets E_1, E_2, \ldots, E_k , with $0 < m(E_i) < \infty$ for $1 \le i \le k$,

$$\sum_{i=1}^{k} \left(\frac{1}{m(E_i)}\right)^{p-1} |\int_{E_i} f(x) \, dx|^p \le M$$

(3) Let $f : \mathbb{R} \times [0,1] \to \mathbb{R}$ be a measurable function such that for any $y \in [0,1]$,

$$\int_{\mathbb{R}} f^2(x, y) \, dx \le 1$$

Prove that there exists a sequence $x_n \to +\infty$ such that

$$\int_0^1 f(x_n, y) \, dy \to 0.$$

(4) Let $E_k \subset [a, b], k \in \mathbb{N}$ be measurable sets, and there exists $\delta > 0$ such that $m(E_k) \ge \delta$ for all k. Assume that $a_k \in \mathbb{R}$ satisfies

$$\sum_{k=1}^{\infty} |a_k| \chi_{E_k}(x) < \infty \qquad \text{for a.e. } x \in [a, b].$$

Show that

$$\sum_{k=1}^{\infty} |a_k| < \infty.$$

(Hint: one of the possible approaches uses Egorov's theorem.)

(5) Let $A, B \subset \mathbb{R}^d$. Assume $A \cup B$ is measurable, and $m(A \cup B) < \infty$. If

$$m(A \cup B) = m^*(A) + m^*(B)$$

Show that A and B are measurable.

(Hint: prove first that for any set A, there a measurable set U, with $A \subset U$, such that $m^*(A) = m(U)$.)

Analysis Qualifying Review, January 10, 2015

Afternoon Session, 2 pm - 5 pm

- (1) Is there a function f, analytic at the origin, taking values $f(\frac{1}{2n}) = f(\frac{1}{2n-1}) = \frac{1}{2n}$, for $n \in \mathbb{N}$?
- (2) Find and classify the singularities of the function $f(z) = \sin\left(\frac{1}{\sin z}\right)$.
- (3) Let f be an entire function such that $f(z) \in \mathbb{R}$, whenever $z \in \mathbb{R}$. Assume that $|f(z)| \leq 1$ on the boundary of the rectangle with the vertices -1, 1, 1 + i, -1 + i. Prove that $|f'(\frac{i}{10})| \leq \frac{10}{9}$.
- (4) Suppose Ω is a bounded region, f is holomorphic on Ω and

$$\limsup_{n \to \infty} |f(z_n)| \le M$$

for every sequence z_n in Ω which converges to a boundary point of Ω . Prove that $|f(z)| \leq M$ for all $z \in \Omega$.

(5) Let $f \in C^1(\mathbb{R})$ be a function with compact support.

(a) Show that for any $x \in \mathbb{R}$,

$$\text{p.v.} \int_{-\infty}^{\infty} \frac{f(\zeta)}{\zeta - x} \, d\zeta := \lim_{\epsilon \to 0} \int_{|\zeta - x| > \epsilon} \frac{f(\zeta)}{\zeta - x} \, d\zeta \quad \text{exists};$$

(b) Prove that

$$\lim_{y \to 0+} \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(\zeta)}{\zeta - (x + iy)} d\zeta = \frac{1}{2} f(x) + \frac{1}{2\pi i} \cdot \text{p.v.} \int_{-\infty}^{\infty} \frac{f(\zeta)}{\zeta - x} d\zeta.$$