Analysis Qualifying Review, May 7, 2015

Morning Session, 9:00 am-noon

- (1) Let $E \subset \mathbb{R}^1$. Show that the characteristic function $\chi_E(x)$ is the limit of a sequence of continuous functions if and only if E is both F_{σ} and G_{δ} .
- (2) Let {g_n} be a sequence of measurable functions on [a, b], satisfying

 (a) |g_n(x)| ≤ M, a.e.x ∈ [a, b];
 (b) For every c ∈ [a, b], lim_{n→∞} ∫_a^c g_n(x) dx = 0.

 Show that for any f ∈ L¹[a, b],

$$\lim_{n \to \infty} \int_a^b f(x) g_n(x) \, dx = 0.$$

(3) Let $f_k(x)$, k = 1, 2... be increasing functions on [a, b]. Assume

$$\sum_{k=1}^{\infty} f_k(x)$$

is convergent on [a, b]. Show that

$$\left(\sum_{k=1}^{\infty} f_k(x)\right)' = \sum_{k=1}^{\infty} f'_k(x), \qquad a.e.x \in [a,b]$$

- (4) (a) Assume that $f \in L^{\infty}(\mathbb{R})$, and f is continuous at 0. Show that $\lim_{n \to \infty} \int \frac{n}{\pi (1 + (nx)^2)} f(x) \, dx = f(0).$
 - (b) Assume that $f \in L^{\infty}(\mathbb{R})$. Show that

$$\lim_{n \to \infty} \int \frac{n}{\pi (1 + n^2 (x - y)^2)} f(y) \, dy = f(x) \qquad a.e.x \in \mathbb{R}$$

(Hint: $\int \frac{1}{\pi (1 + y^2)} \, dy = 1.$)

(5) Let $\{f_n\}$ be a sequence of functions in $L^p(\mathbb{R}^n)$, 1 , which converge almost $everywhere to a function <math>f \in L^p(\mathbb{R}^n)$, and suppose that there is a constant M such that $||f_n||_p \leq M$ for all n. Show that for every $g \in L^q(\mathbb{R}^n)$, q the conjugate of p,

$$\int fg = \lim_{n \to \infty} \int f_n g$$

Is the statement true for p = 1?

(Hint: you may want to use Egorov's Theorem.)

Analysis Qualifying Review, May 7, 2015

Afternoon Session, 2 pm – 5 pm

Notation:

- $\bullet \ \mathbb{D} = \{z: \ |z| < 1\}$
- #S = cardinality of S

(1) Construct an explicit analytic bijection from

 $\{z \in \mathbb{C} : |z| > 1, z \text{ not real and positive}\}$

 to

$$\{z \in \mathbb{C} : \operatorname{Re} z > 0\}.$$

(You may write your mapping as a composition of simpler explicit mappings.)

- (2) Let $A = \{ z \in \mathbb{C} : 5 \le |z| \le 10 \}.$
 - (a) Prove or disprove: there is a function f analytic on a neighborhood of A and satisfying |f(z)| < 1 for |z| = 10, |f(z)| > 1000 for |z| = 5.
 - (b) Prove or disprove: there is a function f analytic on a neighborhood of A and satisfying $\operatorname{Re} f(z) < 1$ for |z| = 10, $\operatorname{Re} f(z) > 1000$ for |z| = 5.

(3) For f analytic on \mathbb{D} let

$$\sigma(f) = \sup\left\{\#f^{-1}(w) : w \in \mathbb{C}\right\}.$$

- (a) Prove or disprove: There exists a sequence f_n of functions analytic on \mathbb{D} converging uniformly on compact sets of \mathbb{D} to a limit function f with all $\sigma(f_n) = 3$ but $\sigma(f) = 4$.
- (b) Prove or disprove: There exists a sequence f_n of functions analytic on \mathbb{D} converging uniformly on compact sets of \mathbb{D} to a limit function f with all $\sigma(f_n) = 4$ but $\sigma(f) = 3$.
- (4) Let $f: \mathbb{D} \to \mathbb{D}$ be an analytic function defined on a neighborhood of $\overline{\mathbb{D}}$ and satisfying
 - $f(\overline{\mathbb{D}}) \subset \mathbb{D};$ • f(0) = 0.
 - f(0) = 0. *n* times

Let $f^{\circ n} = \overbrace{f \circ \cdots \circ f}^{f \circ \cdots \circ f}$. Show that $f^{\circ n}(z) \to 0$ for $z \in \mathbb{D}$.

- (5) Suppose $\{f_n\}$ is a uniformly bounded sequence of analytic functions on a domain Ω such that $\{f_n(z)\}$ converges for every $z \in \Omega$.
 - (a) Show that the convergence is uniform on every compact subset of Ω .
 - (b) Must $\{f'_n\}$ converge uniformly on every compact subset of Ω ? Prove or disprove.