
RESEARCH STATEMENT

DAVID HARRY RICHMAN

My research is in tropical geometry, random graph theory, phylogenetics, and number theory. In

these areas, a central role is played by the notion of effective resistance of an electrical network. Early

work on effective resistance was pioneered by Kirchhoff [Kir47] at the time when electricity was

a new technology. As a motivating example, consider the following resistor network, where each

resistor has unit resistance.

→ →

For electricity passing through this resistor network, how much effective resistance will be encoun-

tered? What fraction of the total current will pass through each individual wire in the network?

Despite these old beginnings, effective resistance has found applications in cutting-edge research

in arithmetic geometry [Zha93; CR93; KRZB16], probability theory [LP14; KW15] and theoretical

computer science [SS11; Asa+17].

From the beginning, the practical desire to answer these questions resulted in a surprising and

beautiful connection of algebra and combinatorics, known as Kirchhoff’s matrix tree theorem. Kirch-

hoff found that effective resistances and current flows could be expressed through counting span-
ning trees of the underlying network. These spanning tree counts, in turn, could be found by taking

determinants of certain matrices.

Random graph theory. Kirchhoff’s work concerning effective resistance can be expressed in

terms of the uniformly random spanning tree (UST), a random process that selects any spanning

tree with equal probability. Three spanning trees in a grid graph are shown below.

Effective resistance is fundamentally connected to another natural random process, the simple ran-
dom walk on a graph [NW59; Tet91]. Aldous [Ald90] and Wilson [Wil96] showed how to generate a

UST directly from a random walk. Wilson’s method for generating a UST achieved improved algo-

rithmic efficiency, by utilizing loop erased random walks (LERW) [Law91]. The study of electricity

was also the initial inspiration for the notion of capacity. When electrically charged particles are

introduced to a conductive material, say a metal plate, then where do they go? Kakutani [Kak49]

showed that random walks solve the graph-theoretic analogue of this problem.

These statistics on spanning trees and spanning forests are also essential to calculations in string

theory, where Feynman graphs describe particle interactions [Ami+16].
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Tropical geometry. Tropical geometry forms a bridge between continuous objects of algebraic

geometry and discrete objects of combinatorics. Algebraic geometry is the study of solutions to

polynomial equations such as x4 + y4 = 10. Over the complex numbers, the set of solutions is

known as a Riemann surface. Tropical geometry allows us to turn a Riemann surface into a graph,

as shown below.

⇝ ⇝

This can be achieved via degenerating a smooth algebraic curve to a curve with nodal singulari-

ties, along a one-parameter family, then taking the dual graph of the nodal curve. Tropical geometry

has been used to solve difficult problems in number theory and algebraic geometry. For instance, it

is believed that there are uniform bounds on rational points on curves of genus g ≥ 2, strengthen-

ing Faltings’ theorem, but no such bound is currently known. Recent work of Katz, Rabinoff, and

Zureick-Brown [KRZB16] made progress toward such a bound, for curves which satisfy an addi-

tional assumption on the Mordell–Weil rank. Tropical geometry was a fundamental ingredient in

their proof.

As an analogue to the conjecture that there exist uniform bounds on the number of rational points

on curves, there was a long-standing conjecture that there are uniform bounds on the number of

torsion points in the Jacobian of an algebraic curve. This conjecture was recently answered, in the

affirmative, by [LSW21; Küh21; DGH21]. For a survey of this recent work, see [Gao21].

This degeneration process turns meromorphic functions on the Riemann surface to piecewise

linear functions on the dual graph. These tools were developed by Baker–Norine [BN07] and oth-

ers [MZ08; GK08]. My research studies tropical analogues of theorems from algebraic geometry

concerning special discrete subsets of algebraic curves, known as Weierstrass points.
When studying Weierstrass points on tropical curves, I discovered that the limiting distribution

of these points tends to a pattern known as the canonical measure of the graph. This canonical

measure was first studied in connection to arithmetic geometry (rational points on algebraic curves)

by Zhang [Zha93]. The canonical measure can be defined using effective resistance [CR93].

Phylogenetics. Phylogenetics is the study of evolutionary histories of organisms. Given observed

traits of modern-day organisms, how did they diverge over time from a common ancestor?
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Figure 1. Possible phylogenetic trees on four species.

In its current form, the phylogenetic “observed traits” are DNA or protein sequences. (Histori-

cally, this was called molecular phylogenetics in contrast to the use of macroscopic observed traits.)

“Solving” phylogenetic inference is computationally hard. It was shown to be NP-complete by

Foulds and Graham [FG82] in the maximum parsimony framework. Phylogenetics research often

focuses on heuristic for “guessing” better evolutionary trees.
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In order to solve a phylogenetics problem with a computer, it is necessary to translate a tree

into a computer-readable format. There are many ways to do this, where it is not obvious what

advantages a given format has over another. In one project, I evaluated different tree formats using

a contrastive learning framework. The goal is to find which format causes groups of plausible trees

to be “clumped together.” The “groups of plausible trees” comes from datasets collected by other

researchers, using Bayesian phylogenetics which is typically computationally slow.

As part of this project, I introduced a new format to encode rooted, binary phylogenetic trees,

called the ordered leaf attachment (OLA) code. This format has the potential to improve the effi-

ciency of many phylogenetic computations. I investigated how the OLA-code-induced distance is

connected to others commonly-used in phylogenetics, such as the subtree-prune-regraft (SPR) dis-

tance.

Number theory. A central problem in number theory is to understand the distribution of prime

numbers. The Riemann hypothesis can be viewed as quantifying the “randomness” of the primes in

some sense. This is done via bounding the growth of the partial sums of the Möbius function defined

on the positive integers under divisibility. A common approach to the Riemann hypothesis is to try

“deforming” the underlying structure, and testing to what extent other properties are preserved

or broken. I take this approach of “deforming” the multiplicative structure of positive integers by

allowing division with rounding, and study the resulting Möbius function.

1. Graph theory

1.1. Random two-forests. In joint work with F. Shokrieh and C. Wu [RSW23], we prove results in

graph theory via use of effective resistance and potential theory on graphs. In particular, we show

bounds on the number of two-component spanning forests that generalize foundational results on

lattices motivated by loop erased random walks [Law91]. The effective resistance can be expressed

as a ratio of counts of spanning trees and certain two-component spanning forests, or “two-forests”.

Theorem 1 ([RSW23]). If F is a uniformly-random two-forest on G = (V,E), then

E(|∂F |) ≤ 2(avg.deg)

(
1 +

1

|V | − 1

)
.

Here “avg. deg” is the average degree of the vertices, 2|E|/|V |.

Theorem 2 ([RSW23]). For any finite graph G = (V,E),

(1)

κ2(G)

κ1(G)
≥ (|V | − 1)2

4|E|
where κ1 denotes the number of spanning trees and κ2 the number of two-forests.

The looping constant of the loop-erased random walk (LERW) on a graph, can be linked to the

behavior of a uniformly random two-forest. This motivates the study of random two-forests on

planar lattices [KKW15; KW16; KW15; LP14]. In the case when G is taken to be a “large enough”

subset of the lattice Zd
, with nearest-neighbor edges, the bound in Theorem 1 is sharp.

Theorem 2 is related to Mason’s conjecture, on the log concavity of matroid independence num-

bers. Mason’s conjecture was solved by [Ana+18; BH20] in independent work, after several decades

of research activity. The bound (1), in matroid theoretic language, involves independence numbers

Ir−1/Ir and I0/I1 for graphic matroids; this bound is stricter than the one implied by Mason’s

conjecture. It would be interesting to study whether stronger bounds can be given on Ik−1/Ik for

graphic matroids, for other k.
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1.2. Distance minors of trees. In other joint work [RSW], we study a special case of effective

resistance: on a tree, the resistance is equal to the usual shortest-path distance. Graham and Pol-

lak [GP71] found that the determinant of the distance matrix reduces to a simple expression de-

pending only on the number of vertices.

We extend their result by finding an expression for the determinant of an arbitrary principal

minor of the distance matrix. Unlike in [GP71], this expression depends on combinatorics of the un-

derlying graph and vertex subset, involving counts of rooted spanning forests and boundary edges.

Theorem 3 ([RSW]). Suppose G = (V,E) is a tree with distance matrix D, and let S ⊂ V be a
nonempty subset of vertices. Then the principal minor D[S] has determinant

detD[S] = (−1)|S|−12|S|−2

|E| · κ1(G;S)−
∑

F2(G;S)

(dego(F, ∗)− 2)2

 .

This result is proved using methods from potential theory—we associate to the data (G,S) a

certain function which is “extremal” for the energy functional, and then manipulate algebraically.

Potential theory was initially developed as a tool for understanding the behavior of electric change

in a material that is electrically conductive [Gre54]. Theorem 3 also has a generalization to graph

with edges lengths. Bapat, Lal, and Pati [BLP06] found that the Graham–Pollak determinant formula

generalizes to q-distance matrices (in two ways). We hope to investigate whether Theorem 3 also

generalizes to q-analogues of distance.

We also hope that the expression in Theorem 3 may be used to make progress toward the lower
bound conjecture for the tau constant on metric graphs [CR93].

2. Tropical geometry

A projective embedding of an algebraic curve is naturally associated with a family of divisors

on the curve, by intersecting the embedded curve with hyperplanes of the ambient space. The

Weierstrass points of a divisor are the points in the corresponding embedding in Pr
where the curve

intersects some hyperplane with “higher-than-expected” multiplicity. On a genus one curve, this

condition for a degree n divisor gives a set of n-torsion points; thus Weierstrass points are a higher

genus analogue of torsion points [Mum75].

2.1. Tropical Weierstrass points. In [Ric24b], I study a natural analogue of Weierstrass points for

a tropical curve. In particular, the number of Weierstrass points for a generic divisor is determined

as a function of the degree and genus; a limiting distribution is proved as the degree grows to

infinity; weights are determined by a combinatorial formula which matches the number of algebraic

Weierstrass points under inverse-tropicalization.

Theorem 4 ([Ric24b]). On a metric graph of genus g, a generic divisor of degree n ≥ g has g(n−g+1)
Weierstrass points.

Theorem 5 ([Ric24b]). Let Γ be a metric graph of genus g ≥ 2, and let δn be the unit discrete measure
supported on the Weierstrass locus of a generic divisor of degree n. Then the sequence of normalized
measures 1

gnδn converges weakly to Zhang’s canonical measure on Γ.

The distribution result mirrors parallel results of Neeman [Nee84] and Amini [Ami14] for alge-

braic curves over the complex numbers C and over a field with non-Archimedean valuation, re-

spectively. The Berkovich analytification of a curve [Ber90] contains a tropical curve as its skeleton,

and divisor theory behaves well with respect to retraction to the skeleton [Bak08]. Amini’s result

suggested that the distribution of Weierstrass points could be a purely tropical phenomenon.
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2.2. Weierstrass weights. Although [Ric24b] gives a fairly complete description of the tropical

Weierstrass locus for a generic divisor, many divisors of particular interest are not generic. Most

prominently, it does not address the tropical Weierstrass locus of the canonical divisor K . In joint

work with O. Amini and L. Gierczak [AGR23], we develop techniques for addressing the tropical

Weierstrass locus on an arbitrary divisor, including K . We consider how Weierstrass points on an

algebraic curve, over a non-Archimedean field, tropicalize to its “skeleton” tropical curve.

Theorem 6 ([AGR23]). Suppose A ⊂ Γ is a closed, connected subset which is W (K)-measurable.
Then, the total weight of Weierstrass points of W(K) tropicalizing to points in A is precisely

deg
(
W(K)|τ−1(A)

)
= g

(
(g + 1) (g(A)− 1)−

∑
ν∈∂outA

(sν0(K)− 1)

)
.

In particular, if K is Weierstrass-finite, then we have the equality τ∗ (W(K)) = gW (K).

For a genus g curve and a generic divisor of degree n ≥ g, the number of Weierstrass points is

g(n − g + 1)2. (We assume our base field is algebraically closed.) In the tropical case, Theorem 5

states that there are g(n − g + 1) Weierstrass points generically. These expressions, which differ

by a factor of (n − g + 1), strongly suggest that the tropicalization map on Weierstrass points is

generically (n− g+1)-to-1. Our results, in a more general version of Theorem 6, confirm that this

is the case.

We also show that there are strong topological constraints on the position of the tropical Weier-

strass locus.

Corollary 7 ([AGR23]). Suppose Γ is a tropical curve of genus g ≥ 2. Then every cycle in Γ contains
a Weierstrass point in W (K).

2.3. Tropical Manin–Mumford conjecture. By analogy with Mordell’s conjecture on finiteness

of rational points, Manin and Mumford conjectured that an algebraic curve of genus 2 or more has

finitely many torsion points. Given an algebraic curve with fixed basepoint x0, we say x is a torsion
point if n(x − x0) is linearly equivalent to the zero divisor for some positive n. Equivalently, x is

a torsion point if the Abel–Jacobi embedding (with respect to x0) sends x to the torsion subgroup

Jac(X)tors of the Jacobian. This conjecture on torsion points was proved by Raynaud [Ray83]. The

following stronger bound was open until very recently.

Problem 1 (Uniform bound on torsion points). Is there a constant N(g) such that any algebraic

curve X of genus g ≥ 2 has #(X ∩ Jac(X)tors) ≤ N(g)?

This long-standing open problem was recently resolved in the affirmative by [LSW21], [Küh21;

DGH21]. It remains to be seen whether tropical methods can be used to provide an additional proof.

For a metric graphΓ, there is an analogous Jacobian [MZ08] which is compatible with the Jacobian

of an algebraic curve under taking the skeletons of non-Archimedean varieties [BR15]. In [Ric23], I

study the tropical version of the Manin–Mumford conjecture, which asks: when a curve is embedded

in its Jacobian, how often does the curve pass through torsion points of the Jacobian? We give a

complete answer in the tropical case.

Theorem 8 ([Ric23]). Let Γ be a metric graph of genus g ≥ 2. If #(Γ ∩ Jac(Γ)tors) is finite, then
#(Γ ∩ Jac(Γ)tors) ≤ 3g − 3.

The bound of 3g−3 in Theorem 8 answers a tropical analogue of Problem 1. However, the Manin–

Mumford conjecture fails for tropical curves: for any metric graph with integer edge lengths, there

are infinitely many torsion points with respect to any basepoint, no matter how large the genus is.

On the other hand, I show that a metric graph does satisfy the Manin–Mumford condition if we

impose certain additional constraints.
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Theorem 9 ([Ric23]). Let G be a biconnected graph of genus g ≥ 2. For a very general choice of edge
lengths ℓ : E(G) → R>0, the metric graph Γ = (G, ℓ) has #(Γ ∩ Jac(Γ)tors) ≤ g + 1.

A graph is biconnected if it cannot be separated into two parts by cutting out one vertex; a very
general choice of edge lengths means we exclude countably many families of positive codimension

in the parameter space of edge-lengths.

There are natural higher-dimensional analogues of the Manin–Mumford condition, where we

embed the d-th symmetric power of a curve, or metric graph, into its Jacobian. If D0 is a fixed

divisor of degree d, we define the d-dimensional Abel–Jacobi map

AJ
(d)
D0

: Symd(Γ) → Jac(Γ) by x1 + · · ·+ xd 7→ [x1 + · · ·+ xd −D0].

There is a natural analogue of the Manin–Mumford condition for this embedding.

I found that a modification of the girth of a graph gives an upper bound on the dimension d for

which the higher Manin–Mumford condition is satisfied. We call this number in 10 the independent
girth of G; note that the girth is minC⊂E(G){#C}.

Theorem 10 ([Ric23]). SupposeΓ = (G, ℓ) is a graph with very general edge lengths. Then Symd(Γ)∩
Jac(Γ)tors is finite if and only if

d ≤ min
C⊂E(G)

{rankM⊥(G)(C)},

where the minimum is taken over all cycles of G and M⊥(G) denotes the cographic matroid of G.

2.4. Future research objectives.

2.4.1. Moduli space. Conditions on canonical Weierstrass points would naturally cut out subsets in

the moduli space of pointed tropical curves.

Problem 2. How is the moduli space of pointed tropical curves stratified according to conditions

on Weierstrass points?

Similar stratifications for the moduli space of algebraic curves are studied by Eisenbud and Har-

ris [EH87a], and recently by Pflueger [Pfl18]. The moduli space of algebraic curves is compatible un-

der tropicalization with a natural moduli space of tropical curves [ACP15]. As a particular case mo-

tivated by [FJP23]: the class of the Weierstrass divisor on M3 is [W3] = −λ+ψ−3δ1−6δ2 [Cuk89;

EH87b]. Can we prove this relation tropically?

3. Number theory

3.1. Floor quotients. In multiplicative number theory, one studies the prime factorization of num-

bers by considering the numbers as a partially ordered set (poset) under division. From this poset,

we have the Möbius function µ(n), which depends on the prime factorization structure of n. It is a

classical result that the Riemann Hypothesis is equivalent to the bound∑
n≤x

µ(n) = O(x1/2+ϵ) as x→ ∞, for any ϵ > 0.

In joint work with J. Lagarias, we attempt to gain a better understanding of the classical Möbius

function by defining a deformation of the partial order of natural numbers under divisibility. Us-

ing the floor function, we define the floor quotients of n as the numbers of the form {d : d =
⌊n/k⌋ for k = 1, 2, . . . , n}. Surprisingly, this defines a partial order relation on the whole num-

bers. This observation was implicit in [Car10]. In Figure 2, we show the floor quotients of n = 16
and their poset structure.
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Figure 2. Poset of floor quotients of 16, with Möbius values µAD(1, d) on right.

In [LR24], we investigate the structure of the poset of floor quotients, answering questions in

parallel with usual results in multiplicative number theory. We obtain polynomial bounds on the

Möbius function of the almost-divisor poset. (The results in [Car10] suggest that µAD(n) should

be considered an analogue of the sum

∑
n/2<i≤n

µ(i) of the usual Möbius function, rather than an

analogue of µ(n).)

Theorem 11 ([LR24]). Let µAD(n) denote the Möbius function of the almost-divisor poset interval
from 1 to n. There is some constant C > 0 such that

|µAD(n)| < Cn1.729 for all n.

We believe the bound in Theorem 11 is not optimal. We hope that further investigation will yield

improved bounds on the Möbius function.

Problem 3. For any ϵ > 0, is there some constant C(ϵ) such that

|µAD(n)| < C(ϵ)n1+ϵ
for all n?

In [LR23], we generalize the floor quotient partial order to an infinite family, parametrized by a

positive integer a, such that the limit a→ ∞ recovers the usual multiplicative structure of positive

integers.

3.2. Rounding functions. Discretization is the process of sending a continuous input to a discrete

output, which is fundamental in many applications such as computer imaging, digital communica-

tion, and finance. Rounding functions are a form of regularly-spaced discretization. These create

interesting behavior in the context of elementary algebra and number theory. In [LMR16; LR19;

LR20] we study commutators of dilated floor functions under different scales. [Ric24a] studies the

self-similar structure of Farey staircases, which are constructed from taking cumulative averages of

rescaled floor functions.

3.3. p-adic continuity and combinatorial sequences. The p-adic topology on the integers pro-

vides a way of viewing the usually-discrete integers, or functions on integers, in an almost-continuous

way. In joint work with A. O’Desky [OR23], we generalize the observation that counting derange-

ments gives a p-adically continuous function to a larger class of derangement-like counting prob-

lems. As an application, certain classes of the counts can be combined to form a two-variable p-adic

incomplete gamma function.

3.4. Counting and geometry. In [AAR23], joint with D. Aulicino and J. Athreya, we study a gen-

eralization of the classical problem of counting closed geodesics of bounded length in a torus.
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