About

Table of contents

  1. What will we cover?
    1. Lean demo
    2. How to use Lean
  2. Project ideas
    1. 1. Newton’s theorem on real roots
    2. 2. Cauchy interlacing theorem
    3. 3. Puiseux’s theorem
    4. 4. Descartes’s rule of signs
    5. 5. Sturm’s theorem for polynomial roots
    6. 6. Newton’s theorem for valued fields
  3. Resources

What will we cover?

Lean demo

From Patrick Massot, Glimpse of Lean.

How to use Lean

  • in the browser, https://live.lean-lang.org/
  • local installation

Project ideas

1. Newton’s theorem on real roots

If \(p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n\) is a polynomial with positive real coefficients \(a_i > 0\), and \(p(x)\) has all (negative) real roots, then the coefficient sequence is ultra log-concave, i.e.

\[2 \log\left(\frac{a_i}{n \choose i}\right) \geq \log\left(\frac{a_{i - 1}}{n \choose {i-1}}\right) + \log\left(\frac{a_{i + 1}}{n \choose {i+1}}\right) \qquad\text{for all $i$}.\]

2. Cauchy interlacing theorem

If \(A\) is a symmetric matrix with eigenvalues \(\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n\), and \(B\) is obtained from \(A\) by deleting the last row and column, then the eigenvalues \(\mu_1 \leq \mu_2 \leq \cdots \leq \mu_{n - 1}\) of \(B\) must interlace the eigenvalues of \(A\), i.e. they satisfy

\[\lambda_i \leq \mu_i \leq \lambda_{i + 1}, \qquad\text{for all $i$}.\]

3. Puiseux’s theorem

Let \(k\) be an algebraically closed field, and let \(k((x))\) denote the field of Laurent series in the formal variable \(x\);

\[k((x)) = \left\{ x^v(a_0 + a_1 x + a_2 x^2 + \cdots) : a_i \in k,\, v \in \mathbb Z \right\}.\]

Let \(k\{\{x\}\}\) denote the union of \(k((x^{1/n}))\) for all positive integers \(n\); we call \(k\{\{x\}\}\) the field of Puiseux series. Then, \(k\{\{x\}\}\) is algebriacally closed.

4. Descartes’s rule of signs

See Descartes’s rule of signs.

5. Sturm’s theorem for polynomial roots

See Sturm’s theorem.

6. Newton’s theorem for valued fields

See Newton polygon - main theorem.

Resources

See other page