1 Logistics

Next meeting: Tuesday April 9, 11:30-1pm

Expectations for next meeting:

- angle constraints on hexagon crease pattern

Problem 11: Suppose we want to fix three consecutive creases on a hexagon at fold angles θ_{1}, θ_{2}, and θ_{3}. (By "fold angle" we mean flat $\Leftrightarrow \theta_{i}=0$.)
(a) What combinations of $\theta_{1}, \theta_{2}, \theta_{3}$ are possible for a hexagon? Find exact equations to characterize this. (Hint: it may help to use https://en.wikipedia.org/wiki/Rodrigues\% 27_rotation_formula)
One approach: given angles $\theta_{1}, \theta_{2}, \theta_{3}$ we may calculate the distance between vertices 4 and 6 of the hexagon. This distance will be in the closed interval $[0,2]$. For this to be a "valid" hexagon configuration though, the distance must be in the interval $[0, \sqrt{3}]$.
What is an expression for this distance, as a function of $\theta_{1}, \theta_{2}, \theta_{3}$?
Particular sub-problem:
(c) Suppose $\theta_{1}=\theta_{3}=0$ and θ_{2} is arbitrary. Then one possibility is that $\theta_{4}=\theta_{6}=0$ and $\theta_{5}=\theta_{2}$. A second possibility is that crease number 5 is "flipped inward", so that $\theta_{5}=-\theta_{2}$, and θ_{4} and θ_{6} are at some positive angle. What is the angle of $\theta_{4}=\theta_{6}$ as a function of θ_{2}, in this case?

- [Writing] Write up notes for this meeting, and continue writing up relevant discussion from this week in draft of final report
- [Final poster] Create a shared latex file for our group's poster, using the template here: https://sites.lsa.umich.edu/logm/resources/

2 Tangent identity

(This is not exactly relevant for our project, just something I find mathematically interesting.)
Near $x=0$, the tangent function has Taylor expansion

$$
\tan (x)=x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\frac{17}{315} x^{7}+\cdots
$$

This infinite series expansion converges when x is in the range $-\frac{\pi}{2}<x<\frac{\pi}{2}$.
Near $x=\frac{\pi}{2}, \tan (x)$ has a singularity so it does not have a Taylor expansion. However, it does have a Laurent expansion (where negative powers are allowed)

$$
\tan (x)=-\left(x-\frac{\pi}{2}\right)^{-1}+\frac{1}{3}\left(x-\frac{\pi}{2}\right)+\frac{1}{45}\left(x-\frac{\pi}{2}\right)^{3}+\frac{2}{945}\left(x-\frac{\pi}{2}\right)^{5}+\cdots
$$

This infinite series converges when $-\frac{\pi}{2}<x<\frac{3 \pi}{2}$ and $x \neq \frac{\pi}{2}$.
The tangent function even has another expression as an infinite series which is valid for all value x where the function is defined! This expression uses the fact that $\tan (x)$ is periodic. Since there is a singularity whenever $x=\ldots,-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots$, and near each singularity $x=a$ the function looks like $-(x-a)^{-1}$, we can write

$$
\tan (x)=\left(\cdots-\left(x+\frac{1}{2} \pi\right)^{-1}-\left(x-\frac{1}{2} \pi\right)^{-1}-\left(x-\frac{3}{2} \pi\right)^{-1}-\left(x-\frac{5}{2} \pi\right)^{-1}+\cdots\right)+(\text { something }) .
$$

In fact, this "something" is just zero! The tangent function satisfies*

$$
\tan (x)=\sum_{n \in \mathbb{Z}}-\left(x-\frac{(2 n+1)}{2} \pi\right)^{-1}
$$

$\left({ }^{*}\right.$ Check: does this infinite series converge?)

