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1 Logistics

Next meeting: Friday February 15, 9:30 - 11am.

Expectations for next meeting:

• Problem 4: for the space of fold configurations for 3 creases (or 6 creases?) through a hexagon,
what does a small neighborhood of the unfolded hexagon look like? Read “Branches of
Triangulated Origami” paper (first 5 pages) to understand the answer given there.

• What do neighborhoods of other flat configurations look like? (How many flat configurations
are there?) How do these neighborhoods fit together? An answer for the local neighborhoods
is given in the paper “Hodge Theory and the Art of Paper Folding”; read pages 3–4 and the
first page or so of Section 3 (p. 9) and Section 4 (p. 12).

• [Writing] Continue writing up relevant discussion from this week in draft of final report (e.g.
What coordinates do we use for configuration space, fold angles vs. crease vectors?)

• [Visualization] Share code for visualizing space of fold configurations.

2 Moduli spaces

Problem 4. What is the space of folding configurations of a hexagon with creases along its three
axes?

Discussion: (For now we consider just the massless case.) To describe a folding configuration
we have different options for what “coordinates” to use:

(1) Fold angles θ1, . . . , θ6 ∈ R/2πZ
(R/2πZ = a circle made by gluing together endpoints of a segment of length 2π)

(2) Crease vectors u1, . . . , u6 ∈ R3

In case (1), our configuration space of all fold configurations is a subspace of (R/2πZ)6 =
(R/2πZ)× · · · × (R/2πZ). For creases in a unit hexagon it is hard(?) to explicitly describe which
fold angles are allowed.

In case (2), our configuration space is a subspace of (R3)6, modulo the action of rotations of R3

acting on all six vectors simultaneously. For the six creases on a unit hexagon, vectors u1, . . . , u6
define a valid fold configuration if and only if these constraints are satisfied:

• |ui| = 1 for i = 1, . . . , 6

• |ui − ui+1| = 1 for i = 1, . . . , 6 (where u7 := u1)

Once we observe this is a complete set of constraints, we can estimate the degrees of freedom in
our configuration space by the heuristic

(degrees of freedom) = (total dimension)− (# of constraints).
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3 Gaussian curvature

On a polyhedral surface we define the Gaussian curvature κ at a point x as

κ(x) = 2π − (sum of angles around x).

The curvature at a point can be positive or negative or zero. Folding does not change the curvature
of a surface.

The curvature is defined as a local property (κ(x) depends only on an arbitrarily small neigh-
borhood of x), but there is an amazing theorem which relates the local curvature to the global
topology of the surface!

Theorem (Gauss–Bonnet). (a) Suppose S is a polyhedral surface which is homeomorphic to a
2-sphere. Then ∑

x∈S

κ(x) = 4π.

(In particular, κ(x) is nonzero only at finitely many points of S, i.e. only when x is a vertex.)
(b) Suppose S is a closed polyhedral surface. Then∑

x∈S

κ(x) = 2πχ(S)

where χ is the Euler characteristic of the surface. A “g-holed torus” has χ(S) = 2− 2g.
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