Origami on Lattices

Author 1 Anamaria Cuza
Author 2 Yuqing Liu
Author 3 Osama Saeed

University of Michigan

Last update February 16, 2019

Origami: a vast world of folding patterns

University of
Michigan
LoG(M)
Author 1,
Anamaria Cuza
Author 2,
Yuqing Liu
Author 3,
Osama Saeed

Source:
http://www.
1000crane.com/
crane-therapy/

Source: http:
//www. creased.
com/corners/
CreasePatternCorner/
creasepatternCorner.
html

■ What should be our strategy in understanding the behaviour of these folding patterns?
■ How to analyse the geometry of the crease patterns, the restrictions on the angles?

Practical Applications: Self-Folding Origami Robots and More

■ What happens at smaller scales?

One Crease

University of
Michigan
LoG(M)
Author 1,
Anamaria
Cuza
Author 2,
Yuqing Liu
Author 3,
Osama Saeed

Two Parallel Creases(Massive)

University of
Michigan
Michigan
LoG(M)
Author 1,
Anamaria
Cuza
Author 2,
Yuqing Liu
Author 3,

Definition (Degrees of freedom)

Degrees of freedom represents the number of independent variables that affect the space of possible configurations. Intuitively, this corresponds to the number of directions in which independent motion can occur.

Two Parallel Creases(Massless):Torus

University of
Michigan
LoG(M)
Author 1,
Anamaria
Cuza
Author 2,
Yuqing Liu
Author 3,
Osama Saeed

Torus

If we actually fold

Source: http://pi.math.cornell.edu/~mec/Winter2009/ Victor/part1.htm

Two Parallel Creases

University of
Michigan
LoG(M)
Author 1,
Anamaria
Cuza
Author 2,
Yuqing Liu
Author 3,
Osama Saeed

■ Evenly Distributed Space.

Two Parallel Creases

University of
Michigan
LoG(M)
Author 1,
Anamaria
Cuza
Author 2,
Yuqing Liu
Author 3,
Osama Saeed

- Massive moduli space
- $\theta_{1}=\pi-2 * \theta_{2}$

Two Parallel Creases

Two Perpendicular Creases

Michigan
LoG(M)
Author 1,
Anamaria
Cuza
Author 2,
Yuqing Liu
Author 3,
Osama Saeed

■ Folding configurations for two perpendicular creases.

Two Perpendicular Creases

University of
Michigan
LoG(M)
Author 1,
Anamaria
Cuza
Author 2,
Yuqing Liu
Author 3,
Osama Saeed

- Moduli space for folding configurations for two perpendicular creases.

Tackling the Massless Hexagon

University of
Michigan
LoG(M)
Author 1,
Anamaria
Cuza
Author 2,
Yuqing Liu
Author 3,
Osama Saeed

Different " coordinate" options
■ Fold angles $\theta_{1}, \ldots, \theta_{6} \in \mathbb{R} / 2 \pi \mathbb{Z}$
■ Crease vectors $u_{1}, \ldots, u_{6} \in \mathbb{R}^{3}$
Note: these vectors form a valid configuration iff the following constraints are satisfied $\left\|u_{i}\right\|=1$ for $i=1, \ldots, 6$ $\left\|u_{i}-u_{i+1}\right\|=1$ for $i=1, \ldots, 6$
■ Estimating degrees of freedom $($ degrees of freedom $)=($ total dimension $)-($ constraints $)$

Future Goals - Short Term and Long Term

University of
Michigan
LoG(M)
Author 1,
Anamaria
Cuza
Author 2,
Yuqing Liu
Author 3,
Osama Saeed

■ Short Term

- Fully characterizing the moduli space for the Hexagon (massless and massive)
- Characterizing the moduli space for a tiling of hexagons

■ Long Term

- Characterizing the moduli space for any general lattice of folds
- General purpose visualization tool for moduli spaces

References

University of
Michigan
LoG(M)
Author 1,
Anamaria Cuza
Author 2,
Yuqing Liu
Author 3,
Osama Saeed
[1] Bryan Gin-ge Chen, Christian D. Santangelo. Branches of Triangulated Origami Near the Unfolded State. Preprint 2018.
[2] Lab of Geometry at Michigan. LoG(M) Beamer Template. University of Michigan Department of Mathematics. 2018.

Special thanks to our mentors, Zachary Hamaker, Ian Tabasco, and Harry Richman!

