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Introduction

By using origami folding processes, researchers have been able to solve a wide range of
engineering problems, such as fabricating different robot morphologies. Applying origami
structures in this way requires an understanding of their restrictions and use of energy. In our
work we have built up from easier examples to the hexagonal structure.

Goal Classify all origami configurations of a regular hexagon with 6 standard creases.
Determine the degrees of freedom and the quantitative relationships between fold angles.

Definition. A sheet is massless if allowed to pass through itself; Otherwise, it is massive.
Example 1. Configuration space for sheet with four perpendicular creases.
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The degrees of freedom is the number of independent variables that affect the space of
possible configurations. The above example has one degree of freedom.

The Perplexing Case of the Massless Hexagon

Global Structure of the Hexagon
We characterize a hexagon configuration using six vectors v1, . . . , v6 ∈ R3 with constraints
|vi|= 1, |vi+1 − vi|= 1. This gives a heuristic for degrees of freedom for the hexagon:

degrees of freedom = (total dim.)− (# constraints)− (dim. of symmetries)

= 6 · 3− 12− 3 = 3

Here the space of symmetries is rotations of R3, which has dimension 3. Kapovich and Mill-
son [3] prove that the singular points of hexagon configuration space are exactly the flat
configurations in Figure 1.

Figure 1: Flat configurations of the massless hexagon

Local Structure of the Hexagon
The origami configuration space near a singular point is described by the null cone of a
quadratic form [2, 3]. A symmetric matrix Q defines a quadratic form fQ by

fQ : (u, v) 7→ uTQv

and the unit null cone of this quadratic form is defined by

Ẑ(Q) = {x ∈ Rn : xTQx = 0 and |x|2= 1}.
Theorem. The unit null cone of a form of signature (p, q) is a product of spheres Sp−1× Sq−1

For our hexagon, the signature is either
(3, 1) or (2, 2). For a signature of (3, 1) our
unit null cone can be described geometri-
cally as two disjoint spheres, whereas for
a signature of (2, 2) our unit null cone can
be described as a torus.
For now, we will consider the more inter-
esting case where our unit null cone is
two disjoint spheres, and examine one of
these spheres in greater detail.

Figure 2: Null cone for
signature (2, 2)

Figure 3: Null cone for
signature (3, 1)

Dancing Near the Unfolded State

To understand a topological space it often helps to cut it up into smaller, more manageable
pieces. For a fold configuration which is near state, we say a crease is a mountain fold if it
is higher than a secant line between its two adjacent flat regions, and a valley fold if it is lower.

Dividing the space according to the mountain-valley labellings, we get nine 0-dimensional,
twenty-four 1-dimensional configurations, and seventeen 2-dimensional configurations. Note
that we are defining dimension here as (# degrees of freedom)− 1.
If we are to consider the 0-dimensional ones as vertices, the 1-dimensional ones as edges,
and the 2-dimensional ones as faces, then we can form a polyhedron which satisfies Euler’s
formula: V− E + F = 2.

Figure 4: Polyhedron visualization of hexagon configurations

We know that every 2-dimensional configuration has three 1-dimensional configurations as
neighbours (except for one 2-dimensional configurations that only have two 1-dimensional
neighbours), and each one of those has two 0-dimensional configurations as neighbours.

Figure 5: Examples of two 2-dimensional configurations, with arrows pointing towards their
1-dimensional neighbours.(bolded lines equivalent to mountain folds, dotted lines equivalent
to valley folds)

Thus, by knowing the neighbours we can assign the mountain/valley configurations to our
polyhedron’s vertices, edges, and faces. Flattening our polyhedron gives us a better view of
the positioning of the configurations:

Figure 6: Flattened polyhedron

Figure 7: Associated mountain-
valley configurations

Working Out the Messy Math

Each of our fold angles is in the interval [−π, π] so the configuration space of a single hexagon
is a bounded space in [−π, π]6 hypercube. We can project this space to [−π, π]3 by only con-
sidering three of the six angles, based on the fact that our hexagon has 3 degrees of freedom.
Divide and Bound Our goal is to generate a boundary restriction relationship by taking
three consecutive fold angles as variables.
Divide We divide the hexagon into two parts: a rhombus consisting of two neighbouring
equilateral triangles, and a 6-crease concave polygon.
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Bound Given the fold angle θ5, we can calcu-
late the bounds of the distance between ver-
tices 4 and 6 (where each vertex corresponds
to the appropriately numbered fold angle). To
have a valid configuration, the distance must
be within the interval [0,

√
3].
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Visualization and Interpretation The configuration space defined by the above equa-
tion is represented in Figure 8. On its surface, θ5 is 0. Figure 9 is a representation of the
configuration space when θ1, θ2, θ3 are near 0. The corresponding contours consist of four
1-dimensional configurations.

Figure 8: Configuration space boundary of hexagon Figure 9: Boundary near unfolded con-
figuration

Future Direction: Energy Propagation

Using the energy function defined by E(Φ) = (
∑
|θi|2)1/2 and our understanding of the con-

figuration space for the hexagon, we would like to explore how energy propagates in a trian-
gular lattice. Imagine a hexagonal region embedded within this lattice that contains a smaller
hexagonal region within itself. There is an energy well that each hexagon must escape to no
longer be considered a flat configuration. We would like to show that the energy well of the
outer hexagon is at least as big as the one for the inner hexagon.

References

[1] M. J. Boswick, P. Di Francesco, O. Gollinelli and E. Guitter. Discrete Folding. preprint 1996.

[2] B. G. Chen and C. D. Santangelo. Branches of Triangulated Origami Near the Unfolded State. Physical Review X, 8 011034, 2018.

[3] M. Kapovich and J. J. Millson. Hodge Theory and the Art of Paper Folding. Publ. RIMS, Kyoto Univ. 33, pp. 1–33, 1997.

[4] Illinois Geometry Lab. IGL Poster Template. University of Illinois at Urbana-Champaign Department of Mathematics, 2017.

LOG(M) Poster Session April 2019


