Origami on Lattices

Introduction
By using origami folding processes, researchers have been able to solve a wide range o engineering problems, such as fabricating different robot morphologies. Applying origam structures in this way requires an understanding of their restrictions and use of energy. In ou work we have built up from easier examples to the hexagonal structure.
Goal Classify all origami configurations of a regular hexagon with 6 standard creases Determine the degrees of freedom and the quantitative relationships between fold angles. Definition. A sheet is massless if allowed to pass through itself; Otherwise, it is massive Example 1. Configuration space for sheet with four perpendicular creases.

The degrees of freedom is the number of independent variables that affect the space of possible configurations. The above example has one degree of freedom.

The Perplexing Case of the Massless Hexagon

Global Structure of the Hexagon

We characterize a hexagon configuration using six vectors $\mathrm{v}_{1}, \ldots, \mathrm{v}_{6} \in \mathbb{R}^{3}$ with constraints $\left|v_{i}\right|=1,\left|v_{i+1}-v_{i}\right|=1$. This gives a heuristic for degrees of freedom for the hexagon:

$$
\text { degrees of freedom }=\text { (total dim.) }- \text { (\# constraints) }- \text { (dim. of symmetries })
$$

$$
\begin{aligned}
& =(\text { (taram. }-(\#+4) \\
& =6 \cdot 3-12-3=3
\end{aligned}
$$

Here the space of symmetries is rotations of \mathbb{R}^{3}, which has dimension 3. Kapovich and Millson [3] prove that the singular points of hexagon configuration space are exactly the flat configurations in Figure 1 .

$$
0.0 .4 x
$$

Figure 1: Flat configurations of the massless hexagon

Local Structure of the Hexagon

The origami configuration space near a singular point is described by the null cone of a quadratic form [2, 3]. A symmetric matrix Q defines a quadratic form f_{Q} by

$$
f_{Q}:(u, v) \mapsto u^{T} Q v
$$

and the unit null cone of this quadratic form is defined by

$$
\hat{Z}(Q)=\left\{x \in \mathbb{R}^{n}: x^{T} Q x=0 \text { and }|x|^{2}=1\right\} .
$$

Theorem. The unit null cone of a form of signature (p, q) is a product of spheres $S^{p-1} \times S^{q-1}$
For our hexagon, the signature is eithe $(3,1)$ or $(2,2)$. For a signature of (3, unit null cone can be described geometrically as two disjoint spheres, whereas fo a signature of $(2,2)$ our unit null cone can described as a torus.
esting case where our unit null cone is two disjoint spheres, and examine one of these spheres in greater detail.

Dancing Near the Unfolded State
To understand a topological space it often helps to cut it up into smaller, more manageable pieces. For a fold configuration which is near state, we say a crease is a mountain fold if it is higher than a secant line between its two adjacent flat regions, and a valley fold if it is lower.
Dividing the space according to the mountain-valley labellings, we get nine 0 -dimensional, twenty-four 1 -dimensional configurations, and seventeen 2 -dimensional configurations. Note that we are defining dimension here as (\# degrees of freedom)
If we are to consider the 0 -dimensional ones as vertices, the 1 -dimensional ones as edges, formula: $V-E+F=2$.

Figure 4: Polyhedron visualization of hexagon configurations
We know that every 2 -dimensional configuration has three 1 -dimensional configurations as neighbours (except for one 2 -dimensional configurations that only have two 1 -dimensiona neighbours), and each one of those has two 0 -dimensional configurations as neighbours.
 1-dimensional neighbours.(bolded lines equivalent to mountain folds, dotted lines equivalent to valley folds)
Thus, by knowing the neighbours we can assign the mountain/valley configurations to our polyhedron's vertices, edges, and faces. Flattening our polyhedron gives us a better view of the positioning of the configurations

Figure 7: Associated mountain valley configurations

Working Out the Messy Math

Each of our fold angles is in the interval $[-\pi, \pi]$ so the configuration space of a single hexagon s a bounded space in $[-\pi, \pi]^{6}$ hypercube. We can project this space to $[-\pi, \pi]^{3}$ by only conivide and Bound Our goal is to generate a boundary restriction relationship by taking hree consecutive fold angles as variables.
Divide We divide the hexagon into two parts: a rhombus consisting of two neighbouring equilateral triangles, and a 6 -crease concave polygon. Bound Given the fold angle θ_{5}, we can calcu-
late the bounds of the distance between ver-
$\theta_{5}\left\langle\theta_{2}-\theta_{5}\left\langle\theta_{2} \quad \begin{array}{l}\text { tices } 4 \text { and } 6 \text { (where each vertex corresponds } \\ \text { to the appropriately numbered fold angle). To } \\ \text { have a valid }\end{array}\right.\right.$ to the appropriately numbered fold angle). To
have a valid configuration, the distance must be within the interval $[0, \sqrt{3}]$.
$d_{4,6}\left(\theta_{5}\right)=\sqrt{\frac{3}{2}-\frac{3 \cos \theta_{5}}{2}} \in[0, \sqrt{3}] \Rightarrow d_{4,6}\left(\theta_{1}, \theta_{2}, \theta_{3}\right) \in[0, \sqrt{3}] \Leftrightarrow \cos \left(\angle\left(\mathbf{v}_{\mathbf{4}}, \mathbf{v}_{\mathbf{6}}\right)\right)=\mathbf{v}_{\mathbf{4}} \cdot \mathbf{v}_{\mathbf{6}} \geq-\frac{1}{2}$
$-\frac{1}{2} \leq \frac{1}{16}\left(1-3 \cos \theta_{1}-3 \cos \theta_{2}-3 \cos \theta_{3}-3 \cos \theta_{1} \cos \theta_{2}-3 \cos \theta_{2} \cos \theta_{3}\right.$
$+9 \cos \theta_{1} \cos \theta_{3}-3 \cos \theta_{1} \cos \theta_{2} \cos \theta_{3}+6 \sin \theta_{1} \sin \theta_{2}+6 \sin \theta_{2} \sin \theta_{3}$
$\left.+6 \cos \theta_{1} \sin \theta_{2} \sin \theta_{3}+6 \sin \theta_{1} \sin \theta_{2} \cos \theta_{3}+12 \sin \theta_{1} \cos \theta_{2} \sin \theta_{3}\right)$
Visualization and Interpretation The configuration space defined by the above equation is represented in Figure 8. On its surface, θ_{5} is 0 . Figure 9 is a representation of the configuration space when $\theta_{1}, \theta_{2}, \theta_{3}$ are near 0 . The corresponding contours consist of four

Figure 8: Configuration space boundary of hexagon

Figure 9: Boundary near unfolded con figuration

Future Direction: Energy Propagation

Using the energy function defined by $E(\Phi)=\left(\sum\left|\theta_{i}\right|^{2}\right)^{1 / 2}$ and our understanding of the configuration space for the hexagon, we would like to explore how energy propagates in a triangular lattice. Imagine a hexagonal region embedded within this lattice that contains a smaller onger be considered a flat configuration. We would like to show that the energy well of the outer hexagon is at least as big as the one for the inner hexagon.

[^0]
[^0]: ## References

 J. J. Boswick, P. Di Francessco, O. Gollinelli and E. Guiter. Discrete Folding, preprint 1996

 2] B. G. Chen and C. D. Santangelo. Branches of Triangulated Origami Near the Unílded State. Physical Review $X, 8011034$, 2018 (1). K. Kapovich and JJ. J. Millson. Hodge Theory and the Art of Paper Folding. Publ. RIMS, Kyoto Uni. 33 , pp. $11-33,1997$.

