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Introduction

The floor function bxc : R → Z discretizes a con-
tinuous input by rounding down to the nearest inte-
ger. When we discretize input on different scales,
it is natural to introduce dilated floor functions
fα(x) := bαxc. Each fα has the same general “stair-
case” shape:

Figure 1: Graph of fϕ = bϕxc, where ϕ = 1+
√
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2 is the golden
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When two such functions are composed, things get
complicated—the “staircase” is now uneven:

Figure 2: Graph of fϕ ◦ f1 = bϕ bxcc where ϕ = 1+
√

5
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As one step towards understanding compositions
fα ◦ fβ, we may ask how dilated floor functions be-
have under changing the order of composition.

Problem

For which real parameters (α, β) do the following
hold for all real x?

bα bβxcc = bβ bαxcc (∗)

bα bβxcc ≥ bβ bαxcc (∗∗)

In order words, we ask when the commutator
[fα, fβ] = bα bβxcc − bβ bαxcc

is either identically zero (∗), or bounded below by
zero (∗∗). Both are satisfied in the trivial cases
•α = 0 or β = 0 or α = β.
What else is allowed? We obtain a complete classi-
fication for both problems.

Results

The classification for (∗∗) relies on connections to two well-studied problems:
•Beatty’s problem [1] to show the existence of “interesting” solutions along green hyperbolic arcs
•Sylvester’s problem [3] on numerical semigroups to show the non-existence of additional solutions.

Theorem 1. The non-trivial solutions to
(∗) occur exactly where both 1

α and 1
β are

positive integers.
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Figure 3: All solutions to (∗)

Theorem 2. The non-trivial solutions to (∗∗) include
the entire second quadrant, and fall in the first and third
quadrants in explicitly known families indicated below.
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Figure 4: All solutions to (∗∗)

To solve (∗) and (∗∗) we first identify all “jump points” of fα ◦ fβ, i.e. points where the graph first
reaches a given (integer) height. For example in the first quadrant α, β > 0,

bα bβxcc ≥ n ⇔ x ≥ 1
β
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⌉
, so we deduce (∗∗) ⇔ 1

β
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⌉
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n

 for all integers n.

A complete list of such criteria for all four quadrants is found in [2].

Poset Structure

The relation [fα, fβ] ≥ 0 defines a binary
relation on dilation factors α, β. For non-
zero dilations it is a transitive relation since

(∗∗) ⇔ α
⌈1
α
n
⌉
≤ β

1
β
n

 for all n ∈ Z,

so it induces a poset structure (R 6=0/ ∼, �).

•On positive reals, it says α � β iff

α = β

m + nβ
for some integers m,n ≥ 0.

•On negative reals, the Farey sets make a
natural appearance within this poset struc-
ture.

Coordinate Changes

The change of coordinates (u, v) :=
(1
α,

β
α

)
is used to view

(∗∗) in terms of Beatty sets. This reveals a hidden symme-
try

(u, v) 7→ (v, u)

of problem (∗∗) which holds in the first quadrant.
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Figure 5: First quadrant solutions to (∗∗)

Beatty Sequences

Given u ≥ 1, the Beatty sequence B(u) takes floors
of all multiples of u:

B(u) := {buc , b2uc , b3uc , . . .} ⊂ N+.

Beatty [1] observed that under the conditions
1
u

+ 1
v

= 1 and u, v irrational

the corresponding sets B(u) and B(v) are comple-
mentary, i.e.

B(u) t B(v) = N+

This explains the green solutions in the first and
third quadrants.

Sylvester Symmetry

Given coprime integers a, b, which numbers can be
represented as non-negative integer combinations?
The gap set contains the non-representable num-
bers:

G(a, b) = N \ {am + bn : m,n ∈ N}.
For example, G(3, 5) = {1, 2, 4, 7}. The gap set
obeys the following symmetry: for any integer x
in the range [0, ab], not divisible by a or b,

x ∈ G(a, b) ⇔ ab− x 6∈ G(a, b).
This is used to show our classification is complete.

Applications

Floor functions arise in the following areas:
•digital straight lines
• algebraic singularities, minimal model program
• ergodic theory, dynamics on nilmanifolds
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Conclusion

The set S of (α, β) ∈ R2 that satisfy (∗∗) consists of
the two coordinate axes together with the following
points.

(i) (Q.I) These points with α > 0 and β > 0 that
satisfy the inequality fall into three collections of
one-parameter continuous families.

(i-a) βα = m1.
(i-b) 1

α = m2.
(i-c) all points with β > 0 that lie on the rectangular

hyperbola
m1αβ +m2α− β = 0.

(ii) (II.Q) All points
(iii) (III.Q) three collections of one parameter continu-

ous families, plus sporadic rational solutions.
(iii-a)α/β = m1
(iii-b)α = −m1

m2
and 0 > β ≥ − 1

m2
.

(iii-c)
m1αβ + α−m2β = 0.

(iii-d) sporadic rational solutions (−m1
m2
, β). A paramet-

ric set of all solutions having m2 = 1 consists
of those (α, β) = (−m1,− 1

m2
m1r
m1r−j), with integer

parameters (j, r) with 1 ≤ j ≤ m1 − 1, and
r ≥ 1. In all cases sporadic rational solutions
have 1

m2
< −β < 2

m2
.

(IV Quad.)None
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