

Dilated floor functions having non-negative commutator

Jeffrey C. Lagarias, Takumi Murayama, D. Harry Richman University of Michigan

Introduction

The floor function $|x|: \mathbb{R} \to \mathbb{Z}$ discretizes a continuous input by rounding down to the nearest integer. When we discretize input on different scales, it is natural to introduce dilated floor functions $f_{\alpha}(x) := \lfloor \alpha x \rfloor$. Each f_{α} has the same general "staircase" shape:

Figure 1: Graph of $f_{\varphi}=\lfloor \varphi x \rfloor$, where $\varphi=\frac{1+\sqrt{5}}{2}$ is the golden ratio

When two such functions are composed, things get complicated—the "staircase" is now uneven:

Figure 2: Graph of $f_{\varphi} \circ f_1 = \lfloor \varphi \lfloor x \rfloor \rfloor$ where $\varphi = \frac{1+\sqrt{5}}{2}$

As one step towards understanding compositions $f_{\alpha} \circ f_{\beta}$, we may ask how dilated floor functions behave under changing the order of composition.

Problem

For which real parameters (α, β) do the following hold for all real x?

$$\left[\alpha \left[\beta x\right]\right] = \left[\beta \left[\alpha x\right]\right] \tag{*}$$

$$\left\lfloor \alpha \left\lfloor \beta x \right\rfloor \right\rfloor \ge \left\lfloor \beta \left\lfloor \alpha x \right\rfloor \right\rfloor \tag{**}$$

In order words, we ask when the commutator

$$[f_{\alpha}, f_{\beta}] = \lfloor \alpha \lfloor \beta x \rfloor \rfloor - \lfloor \beta \lfloor \alpha x \rfloor \rfloor$$

is either identically zero (*), or bounded below by zero (**). Both are satisfied in the trivial cases

$$\alpha = 0$$
 or $\beta = 0$ or $\alpha = \beta$.

What else is allowed? We obtain a complete classification for both problems.

Results

The classification for (**) relies on connections to two well-studied problems:

- Beatty's problem [1] to show the existence of "interesting" solutions along green hyperbolic arcs
- Sylvester's problem [3] on numerical semigroups to show the non-existence of additional solutions.

Theorem 1. The non-trivial solutions to (*) occur exactly where both $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ are

Theorem 2. The non-trivial solutions to (**) include the entire second quadrant, and fall in the first and third quadrants in explicitly known families indicated below. Figure 4: All solutions to (**)

To solve (*) and (**) we first identify all "jump points" of $f_{\alpha} \circ f_{\beta}$, i.e. points where the graph first reaches a given (integer) height. For example in the **first quadrant** $\alpha, \beta > 0$,

 $\left[\alpha \left[\beta x\right]\right] \geq n \iff x \geq \frac{1}{\beta} \left[\frac{1}{\alpha}n\right], \text{ so we deduce } (**) \iff \frac{1}{\beta} \left[\frac{1}{\alpha}n\right] \leq \frac{1}{\alpha} \left[\frac{1}{\beta}n\right] \text{ for all integers } n.$

A complete list of such criteria for all four quadrants is found in [2].

Poset Structure

The relation $[f_{\alpha}, f_{\beta}] \geq 0$ defines a binary relation on dilation factors α, β . For nonzero dilations it is a *transitive* relation since

$$(**) \Leftrightarrow \alpha \left\lceil \frac{1}{\alpha} n \right\rceil \le \beta \left\lceil \frac{1}{\beta} n \right\rceil \text{ for all } n \in \mathbb{Z},$$

so it induces a poset structure $(\mathbb{R}_{\neq 0}/\sim, \preceq)$.

• On positive reals, it says $\alpha \leq \beta$ iff

$$\alpha = \frac{\beta}{m + n\beta}$$

for some integers $m, n \geq 0$.

• On negative reals, the Farey sets make a natural appearance within this poset structure.

Coordinate Changes

The change of coordinates $(u,v) := (\frac{1}{\alpha}, \frac{\beta}{\alpha})$ is used to view (**) in terms of Beatty sets. This reveals a hidden symmetry

$$(u,v)\mapsto (v,u)$$

of problem (**) which holds in the first quadrant.

Figure 5: First quadrant solutions to (**)

Beatty Sequences

Given $u \geq 1$, the Beatty sequence $\mathcal{B}(u)$ takes floors of all multiples of u:

$$\mathcal{B}(u) := \{ \lfloor u \rfloor, \lfloor 2u \rfloor, \lfloor 3u \rfloor, \ldots \} \subset \mathbb{N}_{+}.$$

Beatty [1] observed that under the conditions

$$\frac{1}{u} + \frac{1}{v} = 1$$
 and u, v irrational

the corresponding sets $\mathcal{B}(u)$ and $\mathcal{B}(v)$ are **comple**mentary, i.e.

$$\mathcal{B}(u) \sqcup \mathcal{B}(v) = \mathbb{N}_{+}$$

This explains the **green** solutions in the first and third quadrants.

Sylvester Symmetry

Given coprime integers a, b, which numbers can be represented as non-negative integer combinations? The gap set contains the non-representable numbers:

$$G(a,b) = \mathbb{N} \setminus \{am + bn : m, n \in \mathbb{N}\}.$$

For example, $G(3,5) = \{1,2,4,7\}$. The gap set obeys the following **symmetry**: for any integer xin the range [0, ab], not divisible by a or b,

$$x \in G(a,b) \Leftrightarrow ab-x \not\in G(a,b).$$

This is used to show our classification is complete.

Applications

Floor functions arise in the following areas:

- digital straight lines
- algebraic singularities, minimal model program
- ergodic theory, dynamics on nilmanifolds

References

- [1] Samuel Beatty, *Problem 3173*, Amer. Math. Monthly **33** (1926), no. 3, 159.
- [2] J. C. Lagarias, T. Murayama, and D. H. Richman, Dilated floor functions that commute, Amer. Math. Monthly **123** (2016), no. 10, 1033–1038.
- [3] J. J. Sylvester, *Problem 7382*, Educational Times, New Ser. **37** (1884), no. 266, 177.