
NOTES ON MATCHINGS IN CONVERGENT GRAPH SEQUENCES

HARRY RICHMAN

Abstract. These are notes on the paper “Matching in Benjamini-Schramm convergent graph
sequences” by M. Abért, P. Csikvári, P. Frenkel, and G. Kun [1]. We define Benjamini-Schramm

convergence for a sequence of finite graphs, and show that for graphs in such a convergent sequence
the respective matching measures converge to a limiting measure. This implies that the total

number of matchings, suitably normalized, converges for graphs in such a sequence.

1. Motivation

Earlier this semester, we studied matchings in graphs in the following context: supposeG1, G2, . . .
is a sequence of finite, d-regular graphs, whose girth→∞ as n→∞. Then the normalized matching
polynomials converge, in the sense that

lim
n→∞

1

|Vn|
lnmatGn(x)

converges to some power series in R[[x]], and the limit depends only on the degree d.
(In fact, we showed this limit is

d

2
ln

(
1 +

√
1 + 4(d− 1)x

2

)
− d− 2

2
ln

(
d− 2 + d

√
1 + 4(d− 1)x

2d− 2

)
but this is not important in what follows.)

The idea behind this phenomenon is that any sequence of graphs {Gn} with the above assump-
tions on degree and girth will “converge” to the same object Td, the infinite d-regular tree. We
cannot attach a matching polynomial “matTd

(x)” to the infinite graph Td by the usual definition,
but we can instead imagine taking the limiting object above as a sort of definition.

Example 1. The sequence of 2-regular graphs converges to the (bi-)infinite path T2

, , , · · · →

Sometimes, by understanding the limiting object of the sequence {Gn} sufficiently well, we can
make conclusions about the finite graphs Gn.

Problem. Can we generalize this to other sequences of graphs, i.e. graphs with small girth or
graphs which are not d-regular? In particular,

(Q1) What does it mean for a sequence of finite graphs to “converge”?
(Q2) When does a convergent sequence {Gn} tell us anything about matchings?

Example 2. Here are some situations where we may want such a generalization:

(1) 2-dimensional square lattices: , , , · · · → ?

(2) “triangle paths”: , , , · · · → ?
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(3) rooted binary trees: , , , · · · → ?

(4) complete graphs: , , , · · · → ?

The main result of these notes says that that we can answer “yes” to (Q2) in the first three of the
above examples. (The fourth one fails to converge by our definition.)

2. Benjamini-Schramm convergence

Here we answer (Q1) by defining a formal notion of convergence for a sequence of finite graphs,
due to Benjamini and Schramm [3]. The idea is that the graphs should converge if they are
“locally probably isomorphic”—by “locally” we mean looking at finite-distance neighborhoods, and
by “probably” we mean averaging over neighborhoods at all vertices.

2.1. Local neighborhood probabilities. Here we define how to measure neighborhood proba-
bilities in a graph.

Given a finite graph G = (V,E), a vertex v ∈ V , and an integer distance r ≥ 0, let Nr(v,G)
denote the r-neighborhood subgraph of v, i.e.

Nr(v,G) = induced subgraph of G on vertices {w ∈ V : δ(v, w) ≤ r}
where δ(v, w) is the number of edges in the shortest path in G from v to w. (If no such path exists,
δ(v, w) = +∞.) Note that Nr(v,G) is naturally a rooted graph, with root v.

Given an auxiliary finite rooted graph α, let

P(G, r;α) = Prob(vertex in G has r-neighborhood ∼= α)

=
|{v ∈ V : Nr(v,G) ∼= α}|

|V |
.

Here “∼=” means isomorphic as rooted graphs, i.e. a graph isomorphism sending root vertex to root
vertex.

Example 3. The graphG = has neighborhood probabilities P(G, 1; ) = 1
2 and P(G, 1; ) = 0

since this does not match any induced 1-neighborhood.

Before getting to the definition of graph convergence, there is one additional assumption we make
on the sequence of graphs {Gn}.

Definition. A sequence of (finite) graphs {G1, G2, . . .} is sparse if the degree of vertices in Gn is
bounded, independent of n.

2.2. Graph convergence. Here we define Benjamini-Schramm convergence of graphs. We will
just call this “convergence” since it is the only notion of graph convergence which we consider.

Definition ([3]). A sparse sequence of finite graphs {Gn} is (Benjamini-Schramm) convergent if,
for any distance r ≥ 1 and any rooted graph α, the sequence of probabilities

{P(Gn, r;α)}n≥1
converges to a limit as n→∞.

Example 4. Going back to the Example 2 in the first section, all four sequences have converging
probabilities P(Gn, r;α) as n→∞ but only the first three sequences are sparse. Thus (1), (2) and
(3) are convergent graph sequences.

Remark. In (4), the probabilities P(Gn, r;α) → 0 as n → ∞ for any r and α, since any fixed α
has bounded degree but the degrees of Gn grow with n. These neighborhood probabilities do not
tell us much about the limiting graph; this is the reason we restrict to sparse sequences {Gn}.
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Remark. Note that sequence (3) of Example 2 does not converge to the infinite 3-regular tree T3,

since each graph in the sequence has many degree-1 vertices, i.e. P(Gn, 1; ) > 1
2 for all n.

2.3. Estimability. Now that we have a well-defined notion of convergence of graphs, we can ask
when convergence respects the usual things we look at when studying finite graphs.

Definition. Let G denote the set of finite graphs up to isomorphism. A graph parameter p : G → R
is estimable if, for any convergent sequence {Gn} of finite graphs, the sequence {p(Gn)}n converges
to a limit.

Example 5. The graph parameter p(G) = (average degree of vertices) is estimable, since this is
determined by the 1-neighborhood probabilities of G.

Example 6. The graph parameter p(G) = (# connected components) is not estimable, since taking
disjoint unions of a graph with itself does not change neighborhood probabilities, so e.g.

, , , , · · ·
is a convergent sequence of graphs.

The work of Abért, Csikvári, Frenkel, and Kun (and others) shows that in fact many natural
graph parameters are estimable. In [1] the focus is on independent sets of G and matchings of G,
which are related by the line graph construction. The proofs rely on more general statements in
[4], which covers e.g. many specializations of the Tutte polynomial. This was largely motivated by
[2] in which the chromatic polynomial is considered.

In what follows, we focus on counting matchings in G.

3. Matching measure

Given a finite graph G = (V,E) on n = |V | vertices, recall that a matching in G is a subset of
edges M ⊂ E such that no edges in M share a vertex. Let mk(G) = #(k-edge matchings in G).

The matching polynomial of G is

(1) matG(x) =
∑
k≥0

mk(G)xk

and the matching defect polynomial of G is

qG(x) =
∑
k≥0

(−1)kmk(G)xn−2k(2)

= xn −m1(G)xn−2 +m2(G)xn−4 − · · · .

These polynomials are related by qG(x) = xnmatG(− 1
x2 ).

Definition. The matching measure ρG of a finite graph G is the measure on the complex plane C
determined by taking the uniform measure on the roots of the matching defect polynomial qG(x),
i.e.

(3) ρG =
1

|V |
∑

roots λ

δλ

where the sum is over roots of qG counted with multiplicity.

Note that ρG is a discrete probability measure on C. The definition of ρG says that∫
C
f(z)dρG(z) =

1

|V |
∑

roots λ

f(λ)

for any continuous function f : C→ R.
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Example 7. If G = then qG(x) = x3 − 3x has roots {λ} ≈ {0, ±1.732}.

If G = then qG(x) = x4 − 4x2 + 2 has roots {λ} ≈ {±0.765, ±1.868}.

If G = then qG(x) = x5 − 4x3 has roots {λ} = {0, 0, 0,±2}.

Remark. In general, 0 if a root of qG iff matG has degree < |V |/2 iff G has no perfect matching.

In other words, ρG({0}) = (# roots = 0)
|V | measures “how far” G is from having a perfect matching.

3.1. Main result. We restate (with minor modifications in notation) the main theorem of [1] in
the section on matchings. The gist is that the answer to (Q2) from the introduction is always yes:
convergence of graphs implies convergence of “matching data”.

Theorem ([1], Theorem 3.5). (a) Suppose {Gn} is a convergent sequence of finite graphs, and let
ρGn

be the matching measure of Gn. Then the measures ρGn
converge weakly to a measure ρ,

meaning that for any continuous function f : C→ R,

(?)

∫
f(z)dρGn

(z)→
∫
f(z)dρ(z) as n→∞.

(b) The “matching entropy per vertex”

1

|V |
lnmatG(1) =

1

|V |
ln(total # of matchings)

is an estimable graph parameter.
(c) The “matching ratio”

1

|V |
degmatG(x) =

1

|V |
(max . size of matching)

is an estimable graph parameter.

Remark. By results of Heilmann-Lieb and Godsil on the matching polynomial, the measures ρGn
,

ρ are in fact supported on the compact subset K = [−2
√
d− 1, 2

√
d− 1] of the real line, where d

is the degree bound. So in particular we do not have to worry about the individual integrals in (?)
converging for any continuous f .

Part (a) is the hard part, and we save the proof for the next section. To get parts (b) and (c)
from (a), we just need to pick the right function f(z) to integrate against in (?).

Proof of (a)⇒(b). Observe that the total number of matchings is

matG(1) =
∑
k≥0

mk(G) = qG(i),

where i =
√
−1. Since qG is monic, qG(x) =

∏
roots λ(x− λ). Thus

1

|V |
lnmatG(1) =

1

|V |
ln |qG(i)|

=
1

|V |
∑

roots λ

ln |i− λ| =
∫

ln |i− z|dρG(z).

The function f(z) = ln |i−z| is continuous on the support K = [−2
√
d− 1, 2

√
d− 1] of the measures

ρG, so we can apply (a).
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Alternatively, by the symmetry of the roots of qG occurring in ±λ pairs (or since λ ∈ R), we
have

1

|V |
lnmatG(1) =

1

2|V |
∑

roots λ

ln |(i− λ)(i+ λ)| = 1

2

∫
ln |1 + z2|dρG(z).

So f(z) = 1
2 ln |1 + z2| also works. �

Proof sketch of (a)⇒(c). Here the appropriate function to integrate against is f(z) = 1
2 −

1
2δ0, as

suggested by the remark following Example 7. This is not continuous unfortunately, so an extra
technical step needed is to show that each qG does not have too many of its roots within a small
neighborhood of 0. For details see Lemma 2.4 and Remark 3.2 of [1]. �

4. Proof: convergence of measure

The main steps of the proof of Theorem (a) are:

(1) Weierstrass approximation of continuous functions f : R→ R by polynomials implies that
it suffices to show (?) when f(z) = zk, for all k ≥ 0.

(2) Newton’s identities give explicit algebraic relations between power sums pk and elementary
symmetric sums ek:

{pk(λ) = λk1 + · · ·+ λkn : all k ≥ 1} ↔ {ek(λ) =
∑

i1<···<ik

λi1 · · ·λik : all k ≥ 1}

(3) Show coefficients mk(G) of the matching defect polynomial are expressible in terms of
“subgraph counting” functions, to imply 1

|V |pk(λ) is estimable

The connection (1)↔(2) is that
∫
zkdρG = 1

|V |pk(λ), and the connection (2)↔(3) is that ek(λ) =

(n−k)-th coefficient of qG (up to sign), and this coefficient is 0 if k is odd and mk/2(G) if k is even:

qG(x) =
∏

roots λ

(x− λ) = xn − e1(λ)xn−1 + e2(λ)xn−2 − e3(λ)xm−3 + · · ·

= xn −m1(G)xn−2 +m2(G)xn−4 − · · · .(4)

Remark. To adapt this proof to other graph polynomials, steps (2) and (3) usually follow similarly
but (1) may not work. If the graph polynomial has non-real roots, then convergence of “holomorhic
moments”

∫
zkρG does not imply convergence for all continuous (e.g. non-holomorphic) f : C→ R.

See Theorem 1.10 of [4], or the Introduction of [2], for the appropriate generalized statement.

We omit the details in (1) and (2) and focus on step (3) which we restate as a lemma.

Lemma 1. For any k ≥ 0, the normalized k-power sum of roots of the matching defect polynomial

1

|V |
pk(λ) =

λk1 + · · ·+ λkn
n

, {λi} = roots of qG(x)

is an estimable graph parameter.

(*CORRECTION: In my talk I stated the above lemma for the matching parameters 1
|V |mk(G),

but these are not estimable for k 6= 1.)

Example 8. For k = 0, the parameter 1
|V |p0(λ) = 1 is estimable.

For k = 1, since roots of qG(x) come in ±λ pairs 1
|V |p1(λ) = 0 is estimable.

For k = 2, 1
|V |p2(λ) = 1

|V | (e1(λ)2−2e2(λ)) = 2
|V |m1(G) = 2 |E||V | is estimable since 2 |E||V | = (average degree).

The above discussion should indicate how Lemma 1 implies Theorem (a). The proof of this
lemma will occupy the rest of these notes.
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4.1. Subgraph counting. To prove Lemma 1 we will show that mk(G) is expressible in terms
of functions which count connected subgraphs. These subgraph-counting functions are evidently
estimable by definition of graph convergence. We follow Csikvári and Frenkel [4], Sections 3 and
4. (A more direct argument is possible for mk(G), but the method here applies generally to many
other graph polynomials.)

Definition. Given finite graphs H and G, the subgraph counting function

sub(H,G) = (# subgraphs of G isomorphic to H).

Example 9. When H = (single vertex), sub(•, G) = |V (G)|.
When H = (3 disjoint edges), sub( , G) = m3(G), the number of 3-matchings.

We think of sub(H,−) : G → C as an element of the infinite-dimensional C-vector space

CG = {functions f : G → C}.

Definition. Recall that G = {isomorphism classes of finite graphs}. We also denote C = {isomorphism
classes of connected finite graphs}. For any class H ⊂ G of graphs up to isomorphism, let CH denote
the linear subspace of CG spanned by the H-subgraph counting functions for H ∈ H, i.e.

CH = {
∑
H∈H

cH sub(H,−) : cH ∈ C, finitely many cH 6= 0}.

Fact 1. The subgraph counting functions {sub(H,−) : H ∈ G} are linearly independent in CG .

This follows from the “upper trinagular” property of subgraph counting:

sub(H,G) =


0 if |G| < |H|
1 if G = H

≥ 0 otherwise,

where |G| < |H| means some appropriate combination of |V (G)| ≤ |V (H)| and |E(G)| ≤ |E(H)|
and G 6= H.

Fact 2. The subspace CG forms a subring of CG by pointwise multiplication:

(5) sub(H1, G) · sub(H2, G) =
∑
H

cHH1,H2
sub(H,G)

for some integers cHH1,H2
, non-zero for finitely many H.

Example 10. sub( , G)2 = |E(G)|2 = sub( , G) + 2 sub( , G) + 2 sub( , G).

Remark. Fact 1 and the above example imply CC is NOT a subring of CG .

Fact 3. The sequence {Gn} converges if and only if for all connected H,

lim
n→∞

1

|Vn|
sub(H,Gn)

converges.

This should be plausible since convergence is defined in terms of counting (rooted) neighborhoods
of Gn, and neighborhoods are always connected. If we know all neighborhoods of radius r, then we
know all connected subgraphs up to diameter r/2. (or up to diameter r?)
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Remark. If H is disconnected then 1
|V | sub(H,G) may not be estimable. For example if H = (two

verticies) then
1

|V |
sub(• •, G) =

1

|V |

(
|V |
2

)
=
|V | − 1

2

is not estimable for the same reason that (# connected components) is not estimable.

Returning to Lemma 1, we have the following problem: we want to show that 1
npk(λ) is estimable,

and mk(G) is obviously a subgraph-counting parameter since mk(G) = sub([k disjoint edges], G),
but H = (k disjoint edges) is NOT a connected subgraph c.f. Fact 3. The final step left here is to
get around this problem.

4.2. Additivity and multiplicativity. Here we prove Lemma 1, using the argument given in [4],
Section 4. The goal is to show the power sums pk(λ) of the roots of qG(x) depend only on counting
connected subgraphs of G, and not on counting disconnected subgraphs.

Definition. A graph parameter p(G) is additive if on disjoint unions of graphs

p(G1 tG2) = p(G1) + p(G2).

Definition. A graph polynomial fG(x) is multiplicative if on disjoint unions

fG1tG2
(x) = fG1

(x)fG2
(x).

Lemma 2 ([4], Lemma 4.2). If a graph parameter p ∈ CG, then p is additive if and only if p ∈ CC.

Proof. The direction (⇐) is clear: if H is connected, then

sub(H,G1 tG2) = sub(H,G1) + sub(H,G2).

In the other direction (⇒), suppose p is additive. Since p ∈ CG write

p(G) =
∑

H∈C connected

cH sub(H,G) +
∑
H 6∈C

cH sub(H,G).

Additivity is linear, so without loss of generality suppose cH = 0 for all connected H. Now let
Hmin be the minimal graph with coefficient cH 6= 0. By assumption this is not connected so
Hmin = H1 tH2 for some non-empty subgraphs. Then by additivity

p(Hmin) = p(H1) + p(H2)

=
∑
H 6∈C

cH sub(H,H1) +
∑
H 6∈C

cH sub(H,H2) = 0

by the minimality of Hmin > H1, H2. But p(Hmin) =
∑
H 6∈C cH sub(H,Hmin) = cHmin

, so cHmin
= 0.

This contradicts our choice of Hmin and implies p ∈ CC. �

Lemma 3 ([4], Lemma 4.3). If fG(x) is a multiplicative graph polynomial such that the power

sum of its roots pk(λ) =
∑

roots λ

λk is in CG for some k, then pk(λ) ∈ CC.

Proof. Since fG(x) is multiplicative, the power sum pk(λ) is an additive graph parameter. Then
apply Lemma 2. �

Proof of Lemma 1. We have shown the following:

{mk(G) ∈ CG for all k } ⇒ { ek(λ) ∈ CG for all k }
⇒ { pk(λ) ∈ CG for all k }
⇒ { pk(λ) ∈ CC for all k }
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where λ = {λ1, . . . , λn} always refers to the roots of qG(x). The first implication is by equation (4),
the second by Newton’s identities and Fact 2, and the third by the fact that qG(x) is multiplicative
and Lemma 3. By Fact 3, this implies 1

|V |pk(λ) is estimable. �
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