Minors of tree distance matrices

Harry Richman[†] National Center for Theoretical Sciences, Farbod Shokrieh University of Washington, Chenxi Wu University of Wisconsin

Distance matrices and determinants

Distance = number of edges in shortest path between vertices

• Examples of distance matrices:

$$D = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 & 3 \\ 2 & 1 & 0 & 1 & 2 \\ 3 & 2 & 1 & 0 & 1 \\ 4 & 3 & 2 & 1 & 0 \end{pmatrix} \qquad D = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 2 & 2 & 2 \\ 1 & 2 & 0 & 2 & 2 \\ 1 & 2 & 2 & 0 & 2 \\ 1 & 2 & 2 & 2 & 0 \end{pmatrix}$$

$$D = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 2 & 2 & 2 \\ 1 & 2 & 0 & 2 & 2 \\ 1 & 2 & 2 & 0 & 2 \\ 1 & 2 & 2 & 2 & 0 \end{pmatrix}$$

Submatrices

• Example: Tree shown in Figure 1, S= subset of leaf vertices.

$$D = \begin{pmatrix} 0 & 1 & 2 & 1 & 1 & 2 & 3 \\ 1 & 0 & 1 & 2 & 2 & 1 & 2 \\ 2 & 1 & 0 & 3 & 3 & 2 & 1 \\ 1 & 2 & 3 & 0 & 2 & 3 & 4 \\ 1 & 2 & 3 & 2 & 0 & 3 & 4 \\ 2 & 1 & 2 & 3 & 3 & 0 & 3 \\ 3 & 2 & 1 & 4 & 4 & 3 & 0 \end{pmatrix}, \qquad D[S] = \begin{pmatrix} 0 & 2 & 3 & 4 \\ 2 & 0 & 3 & 4 \\ 3 & 3 & 0 & 3 \\ 4 & 4 & 3 & 0 \end{pmatrix},$$

$$\det D = 192 \qquad \det D[S] = -252$$

$$D[S] = \begin{pmatrix} 0 & 2 & 3 & 4 \\ 2 & 0 & 3 & 4 \\ 3 & 3 & 0 & 3 \\ 4 & 4 & 3 & 0 \end{pmatrix},$$

$$\det D[S] = -252$$

Problem: What is the determinant of the distance matrix of a tree?

• For the two examples, $\det D = 32$.

The fact that both matrices have the same determinant is not a coincidence!

Theorem (Graham-Pollack, 1971)

For any tree on n vertices, $\det D = (-1)^{n-1}2^{n-2}(n-1)$.

Application: Phylogenetics

A phylogenetic tree describes the evolutionary history connecting living organisms

Problem: What is the most likely phylogenetic tree, given observed biological data?

Figure 1. Example tree with 4 leaves.

Figure 2. Possible phylogenetic tree.

Potential theory

Problem: How do particles 'distribute' within a region, given repulsive potential?

Figure 3. Charged particles on a 2D surface, and on a 1D space.

- Consider "energy" $\mathcal{E}(\mathbf{u}) = -\frac{1}{2}\mathbf{u}^{\mathsf{T}}D[S]\mathbf{u}$
- Equilibrium reached when energy minimized
- Conservation of mass: constrained to ${\bf u}$ with ${\bf 1}^{\intercal}{\bf u}=1$

Key Observations: (cf. facts on signature of D[S], due to Bapat)

- 1. $\min \{ \mathcal{E}(\mathbf{u}) : \mathbf{1}^{\mathsf{T}}\mathbf{u} = 1 \} = -\frac{1 \det D[S]}{2 \cot D[S]}$
- 2. Minimum $\mathcal{E}(\mathbf{u})$ occurs at $D[S]\mathbf{u}^* = \lambda \mathbf{1}$

Here $\cot A$ is the sum of cofactors, i.e. $\mathbf{1}^\intercal A^{-1} \mathbf{1} = \cot A / \det A$ Consequence of potential theory perspective: monotonicity property

Theorem (R-Shokrieh-Wu, 2025+)

For any tree G, if $A \subset B \subset V(G)$, then $\frac{\det D[A]}{\cot D[A]} \le \frac{\det D[B]}{\cot D[B]}.$

Rooted spanning forests

Equilibrium vector \mathbf{u}^* can be expressed in terms of combinatorial quantities

Figure 4. Some S-rooted and (S,*)-rooted spanning forests

- $\mathcal{F}_1(G;S)=S$ -rooted spanning forests of G
- $\mathcal{F}_2(G;S)=(S,*)$ -rooted spanning forests
- $\kappa_1(G;S)$ and $\kappa_2(G;S)=$ number of respective spanning forests

Theorem (Bapat-Sivasubramanian, 2011)

"Equilibrium" vector ${\bf u}^*$ satisfying $D[S]{\bf u}^*=\lambda{\bf 1}$ and ${\bf 1}^{\intercal}{\bf u}^*=1$ is

$$\mathbf{u}_{i}^{*} = \frac{1}{2 \kappa_{1}(G; S)} \sum_{F \in \mathcal{F}_{1}(G; S)} (2 - \deg^{o}(F, v_{i})).$$

Bapat–Sivasubramanian used above to prove a combinatorial identity for $\cot D[S]$

• Why does $2-\deg$ appear? Identity with Laplacian matrix L:

$$(LD)_{i,j} = \begin{cases} 2 - \deg(v_i) & \text{if } i \neq j \\ -\deg(v_i) & \text{if } i = j \end{cases}$$

Theorem (R-Shokrieh-Wu, 2025+)

For any tree G and any vertex subset $S \subset V(G)$, we have

$$\det D[S] = (-1)^{|S|-1} 2^{|S|-2} \left((n-1)\kappa_1(G;S) - \sum_{\mathcal{F}_2(G;S)} (\deg^o(F,*) - 2)^2 \right).$$

By above and an identity for $\cot D[S]$ by Bapat–Sivasubramanian (2011),

$$\frac{\det D[S]}{\cot D[S]} = \frac{1}{2} \left((n-1) - \frac{\sum_{\mathcal{F}_2(G;S)} (\deg^o(F,*) - 2)^2}{\kappa_1(G;S)} \right).$$

Symanzik polynomials

Symanzik polynomials of the first and second kind, ψ_G and ϕ_G , appear in quantum field theory. For a tree with edge lengths $\{\alpha_e : e \in E(G)\}$,

$$\frac{\det D[S]}{\cot D[S]} = \frac{1}{2} \left(\sum_{E(G)} \alpha_e - \frac{\phi_{(G/S)}(p_{can}; \underline{\alpha})}{\psi_{(G/S)}(\underline{\alpha})} \right), \quad \text{where } p_{can}(v) = \deg(v) - 2.$$

Further questions

q-distance analogues,

$$[n]_q = 1 + q + q^2 + \dots + q^{n-1}$$

q-analogue of Graham-Pollak found by Bapat-Lal-Pati and Yan-Yeh

- k-Steiner distances: for a choice of k vertices, count number of edges in subtree spanned by chosen vertices. Explored by Cooper-Du and Azimi-Sivasubramanian
- "Combinatorial" proof of main identity? Gutierrez—Lillo