Equidistribution of Weierstrass points on tropical curves

Weierstrass points

The Weierstrass locus W(D) of a divisor D on an algebraic curve X consists of points of "higher than expected tangency" with hyperplanes in the projective embedding $\phi_D : X \to \mathbb{P}^r$,

$$W(D) = \{ x \in X : \phi(X) \cap H \ge (r+1)x$$
for some hyperplane $H \}.$

On a genus 1 curve, these are the N-torsion points (up to some translation).

Figure 1: 4-torsion points on a complex elliptic curve

As $N \to \infty$, N-torsion points "evenly distribute" over a complex elliptic curve. In general, Mumford suggested we should consider Weierstrass points as higher-genus analogues of N-torsion points. This makes it natural to ask:

Problem

How do Weierstrass points distribute on a curve?

For curves over \mathbb{C} , this was answered by Amnon Neeman, a student of Mumford.

Theorem (Neeman, 1984) If X is complex algebraic curve, the Weierstrass points $W(D_N)$ distribute according to the Bergman measure on X as $N \to \infty$.

We can also consider curves over a non-Archimedean field $(\mathbb{K}, \text{val}: \mathbb{K}^{\times} \to \mathbb{R})$, which we assume is algebraically closed. The Weierstrass points lie in $X(\mathbb{K}) \subset X^{\mathrm{an}}$.

Theorem (Amini, 2014) If X^{an} is Berkovich curve, the Weierstrass points $W(D_N)$ distribute according to the Zhang measure on X^{an} as $N \to \infty$.

Figure 2: Weierstrass points on Berkovich elliptic curve and its skeleton

Harry Richman University of Michigan

Tropical curves

A **tropical curve** is a metric space obtained from a finite graph by assigning edge lengths. Geometrically, it can represent a smooth algebraic curve degenerating to a collection of \mathbb{P}^1 's meeting at nodes. We turn a degeneration $X_t \rightsquigarrow X_0$ into a metric graph by making each \mathbb{P}^1 -component of X_0 into a vertex and each node of X_0 into an edge, whose length is equal to the "rate of degeneration" of the node. Explicitly, we assign length L to the node $\{uv - t^L = 0\}$. Example: $X_t = \{xyz + tx^3 + t^2y^3 + t^5z^3 = 0\} \subset \mathbb{P}^2(\mathbb{C})$

The node $\{x, z = 0\}$ is assigned an edge of length 2 in the dual graph, since the node is described by $\{uv + t^2\}$ in a local-analytic neighborhood. The nodes $\{x, y = 0\}$ and $\{y, z = 0\}$ are assigned edge lengths 5 and 1 respectively.

Figure 3: Elliptic curve degenerating to nodal curve with three \mathbb{P}^1 components

A one-parameter family X_t of curves over \mathbb{C} is also a single curve over the field of rational functions $\mathbb{C}(t)$, which has non-Archimedean valuation

 $val(a_0t^n + a_1t^{n+1} + \cdots) = n.$

Choosing different $\mathbb{C}[t]$ -models for a curves gives different vertex sets in the resulting dual metric graph.

Tropical Weierstrass points

The tropical Weierstrass locus W(D) of a divisor on a metric graph Γ is defined as

> $W(D) = \{ x \in \Gamma : E \ge (r+1)x \}$ for some $E \in |D|$

where r = r(D) is the Baker-Norine rank. When $\deg(D) \ge 2g - 1, r(D) = N - g.$ In Amini's theorem, the limiting distribution μ depends only on a skeleton Γ of X^{an} . Thus it is natural to ask whether this result can be stated for and proved by purely combinatorial methods. However, W(D) is **not always finite** on Γ .

On a metric graph an (effective) **divisor** D is a finite collection of "chips" placed on Γ . Linear equivalence means we may move any subset of chips along a cut-set of Γ , at the same speed and direction. Intuitively, this amounts to "discrete current flow" on Γ .

algebraic cu divisors Div meromorph linear system $= \mathbb{P}^r$ rank r = di

Example:

Figure 5: Weierstrass locus W(K) on two genus 3 curves

{y=0} L=1L=5{*z*=0} L=2 ${x=0}$

and Γ is "grounded" at z. The **current** through an edge is the slope |j'| of the voltage function (Ohm's law). Example:

Example:

Figure 4: Dual metric graph of degeneration

ic curve X		tropical curve Γ
$\operatorname{Div}(X)$	\rightsquigarrow	divisors $Div(\Gamma)$
orphic functions	\rightsquigarrow	piecewise $\mathbb Z$ -linear functions
ystem $ D $	$\sim \rightarrow$	linear system $ D $
•		$=$ polyhedral complex of dim $\geq r$
$= \dim D $	\rightsquigarrow	rank $r = Baker-Norine$ rank
Table 1: Divisor theory from algebraic curves to tropical curves		

Reduced divisors

A reduced divisor $\operatorname{red}_q[D]$ is the unique representative linearly equivalent to D whose chips are "as close as possible" to $q \in \Gamma$.

Figure 6: Reduced divisor $red_a[D]$

Dhar's burning algorithm is an easy method for computing reduced divisors. This allows us to find the Weierstrass locus since

 $x \in W(D) \quad \Leftrightarrow \quad \operatorname{red}_x[D] \ge (r+1)x.$

Canonical measure

Zhang's canonical measure μ on Γ may be defined in terms of resistor networks, following Baker–Faber. We consider Γ a **resistor network** making each edge a resistor with resistance = length. Given points $y, z \in \Gamma$, we let

 $j_z^y = \begin{pmatrix} \text{voltage on } \Gamma \text{ when 1 unit of} \\ \text{current is sent from } y \text{ to } z \end{pmatrix}$

Figure 7: Current flow from y to z on Γ with unit edge lengths

The **canonical measure** $\mu(e)$ is the "current defect"

 $\mu(e) = \text{current by passing } e \text{ when 1 unit sent from } e^- \text{ to } e^+$ = 1 - (current through e when $\cdots).$

Figure 8: Canonical measures on Γ with unit edge lengths

Results

Theorem A. For a generic divisor class [D] on Γ , the Weierstrass locus W(D) is finite.

Theorem B. Let e be an edge of Γ and let $[D_N]$ be a generic divisor class of degree N. As $N \to \infty$, $\#(W(D_N) \cap e) \to \mu(e).$

where μ is Zhang's canonical measure.

(discrete current flow) $\xrightarrow{N \to \infty}$ (continuous current flow) $\#(W(D_N) \cap e)$ canonical measure $\mu(e)$