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Weierstrass points

The Weierstrass locus W (D) of a divisor D on an
algebraic curve X consists of points of “higher than ex-
pected tangency” with hyperplanes in the projective em-
bedding φD : X → Pr,

W (D) = {x ∈ X : φ(X) ∩H ≥ (r + 1)x
for some hyperplane H}.

On a genus 1 curve, these are the N -torsion points (up to
some translation).

Figure 1: 4-torsion points on a complex elliptic curve

As N → ∞, N -torsion points “evenly distribute” over a
complex elliptic curve. In general, Mumford suggested we
should consider Weierstrass points as higher-genus ana-
logues of N -torsion points. This makes it natural to ask:

Problem

How do Weierstrass points distribute on a curve?

For curves over C, this was answered by Amnon Neeman,
a student of Mumford.

Theorem (Neeman, 1984) If X is complex alge-
braic curve, the Weierstrass points W (DN) distribute
according to the Bergman measure on X as N →∞.

We can also consider curves over a non-Archimedean field
(K, val : K× → R), which we assume is algebraically
closed. The Weierstrass points lie in X(K) ⊂ Xan.

Theorem (Amini, 2014) If Xan is Berkovich
curve, the Weierstrass points W (DN) distribute ac-
cording to the Zhang measure on Xan as N →∞.

Figure 2: Weierstrass points on Berkovich elliptic curve and its skeleton

Tropical curves

A tropical curve is a metric space obtained from a finite graph by assigning edge lengths. Geometrically, it can represent
a smooth algebraic curve degenerating to a collection of P1’s meeting at nodes. We turn a degeneration Xt X0 into a
metric graph by making each P1-component of X0 into a vertex and each node of X0 into an edge, whose length is equal
to the “rate of degeneration” of the node. Explicitly, we assign length L to the node {uv − tL = 0}.
Example: Xt = {xyz + tx3 + t2y3 + t5z3 = 0} ⊂ P2(C)

The node {x, z = 0} is assigned an edge of length 2 in the dual graph, since the node is described by {uv+ t2} in a
local-analytic neighborhood. The nodes {x, y = 0} and {y, z = 0} are assigned edge lengths 5 and 1 respectively.

Figure 3: Elliptic curve degenerating to nodal curve with three P1 components Figure 4: Dual metric graph of degeneration

testA one-parameter family Xt of curves over C is also
a single curve over the field of rational functions
C(t), which has non-Archimedean valuation

val(a0t
n + a1t

n+1 + · · · ) = n.

Chosing different C[t]-models for a curves gives dif-
ferent vertex sets in the resulting dual metric graph.

On a metric graph an (effective) divisor D is a finite collection of
“chips” placed on Γ. Linear equivalence means we may move
any subset of chips along a cut-set of Γ, at the same speed and
direction. Intuitively, this amounts to “discrete current flow” on Γ.

algebraic curve X tropical curve Γ
divisors Div(X)  divisors Div(Γ)
meromorphic functions  piecewise Z-linear functions
linear system |D|  linear system |D|

= Pr = polyhedral complex of dim ≥ r
rank r = dim |D|  rank r = Baker-Norine rank

Table 1: Divisor theory from algebraic curves to tropical curves

Tropical Weierstrass points

The tropical Weierstrass locus W (D) of a
divisor on a metric graph Γ is defined as

W (D) = {x ∈ Γ : E ≥ (r + 1)x
for some E ∈ |D|}

where r = r(D) is the Baker-Norine rank. When
deg(D) ≥ 2g − 1, r(D) = N − g.
In Amini’s theorem, the limiting distribution µ
depends only on a skeleton Γ of Xan. Thus it is
natural to ask whether this result can be stated for
Γ and proved by purely combinatorial methods.
However, W (D) is not always finite on Γ.

Figure 5: Weierstrass locus W (K) on two genus 3 curves

Reduced divisors

A reduced divisor redq[D] is the unique representative linearly
equivalent to D whose chips are “as close as possible” to q ∈ Γ.
Example:

 

Figure 6: Reduced divisor redq[D]

Dhar’s burning algorithm is an easy method for computing re-
duced divisors. This allows us to find the Weierstrass locus since

x ∈ W (D) ⇔ redx[D] ≥ (r + 1)x.

Canonical measure

Zhang’s canonical measure µ on Γ may be defined in terms
of resistor networks, following Baker–Faber. We consider
Γ a resistor network making each edge a resistor with
resistance = length. Given points y, z ∈ Γ, we let

jyz =
(
voltage on Γ when 1 unit of
current is sent from y to z

)
and Γ is “grounded” at z. The current through an edge
is the slope |j′| of the voltage function (Ohm’s law).
Example:

Figure 7: Current flow from y to z on Γ with unit edge lengths

The canonical measure µ(e) is the “current defect”
µ(e) = current bypassing e when 1 unit sent from e− to e+

= 1− ( current through e when · · · ).
Example:

Figure 8: Canonical measures on Γ with unit edge lengths

Results

Theorem A. For a generic divisor class [D] on Γ,
the Weierstrass locus W (D) is finite.

Theorem B. Let e be an edge of Γ and let [DN ] be
a generic divisor class of degree N . As N →∞,

#(W (DN) ∩ e)
N

→ µ(e).

where µ is Zhang’s canonical measure.

Proof Idea:
(discrete current flow) N→∞−−−→ (continuous current flow)

l l
#(W (DN) ∩ e) canonical measure µ(e)
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