MINORS OF TREE DISTANCE MATRICES

HARRY RICHMAN, FARBOD SHOKRIEH, AND CHENXI WU

Abstract

We prove that the principal minors of the distance matrix of a tree satisfy a combinatorial expression involving counts of rooted spanning forests of the underlying tree. This generalizes a result of Graham and Pollak. We also give such an expression for the case of edge-weighted trees.

Contents

1. Introduction 1
2. Graphs and spanning forests 4
3. Distance minors: Preliminaries 8
4. Quadratic optimization 9
5. Distance minors: Proofs 11
6. Examples 16
Acknowledgements 18
References 18

1. Introduction

Suppose $G=(V, E)$ is a tree with n vertices. Let D denote the distance matrix of G. In [6], Graham and Pollak proved that

$$
\begin{equation*}
\operatorname{det} D=(-1)^{n-1} 2^{n-2}(n-1) \tag{1}
\end{equation*}
$$

This identity is remarkable in that the result does not depend on the tree structure, beyond the number of vertices. The identity (1) was motivated by a problem in data communication, and inspired much further research on distance matrices.

The main result of this paper is to generalize (1) by replacing $\operatorname{det} D$ with any of its principal minors. For a subset $S \subset V(G)$, let $D[S]$ denote the submatrix consisting of the S-indexed rows and columns of D.

Theorem 1.1. Suppose G is a tree with n vertices, and distance matrix D. Let $S \subset V(G)$ be a nonempty subset of vertices. Then

$$
\begin{equation*}
\operatorname{det} D[S]=(-1)^{|S|-1} 2^{|S|-2}\left((n-1) \kappa(G ; S)-\sum_{\mathcal{F}_{2}(G ; S)}\left(\operatorname{deg}^{o}(F, *)-2\right)^{2}\right) \tag{2}
\end{equation*}
$$

where $\kappa(G ; S)$ is the number of S-rooted spanning forests of $G, \mathcal{F}_{2}(G ; S)$ is the set of $(S, *)$-rooted spanning forests of G, and $\operatorname{deg}^{\circ}(F, *)$ denotes the outdegree of the floating component of F.

[^0]For definitions of $(S, *)$-rooted spanning forests and other terminology, see Section 2. When $S=V$ is the full vertex set, the set of V-rooted spanning forests is a singleton, consisting of the subgraph with no edges, so $\kappa(G ; V)=1$; and moreover the set $\mathcal{F}_{2}(G ; V)$ of $(V, *)$-rooted spanning forests is empty. Thus (2) recovers the Graham-Pollak identity (1) when $S=V$.
1.1. Weighted trees. If $\left\{\alpha_{e}: e \in E\right\}$ is a collection of positive edge weights, the α-distance matrix $D^{(\alpha)}$ is defined by setting the (u, v)-entry to the sum of the weights α_{e} along the unique path from u to v. The relation (1) has an analogue for the weighted distance matrix,

$$
\begin{equation*}
\operatorname{det} D^{(\alpha)}=(-1)^{n-1} 2^{n-2} \sum_{e \in E} \alpha_{e} \prod_{e \in E} \alpha_{e} \tag{3}
\end{equation*}
$$

which was proved by Bapat-Kirkland-Neumann [1]. The weighted identity (3) reduces to (1) when taking all unit weights, $\alpha_{e}=1$. We prove the following weighted version of our main theorem.

Theorem 1.2. Suppose $G=(V, E)$ is a finite, weighted tree with edge weights $\left\{\alpha_{e}: e \in E\right\}$, and weighted distance matrix $D=D^{(\alpha)}$. For any nonempty subset $S \subset V$, we have

$$
\begin{equation*}
\operatorname{det} D^{(\alpha)}[S]=(-1)^{|S|-1} 2^{|S|-2}\left(\sum_{E(G)} \alpha_{e} \sum_{\mathcal{F}_{1}(G ; S)} w(\bar{T})-\sum_{\mathcal{F}_{2}(G ; S)} w(\bar{F})\left(\mathrm{deg}^{o}(F, *)-2\right)^{2}\right) \tag{4}
\end{equation*}
$$

where $\mathcal{F}_{1}(G ; S)$ is the set of S-rooted spanning forests of $G, \mathcal{F}_{2}(G ; S)$ is the set of $(S, *)$-rooted spanning forests of $G, w(\bar{T})$ and $w(\bar{F})$ denote the co-weights of the forests T and F, and $\operatorname{deg}^{o}(F, *)$ is the outdegree of the floating component of F, as above.

Theorem 1.2 reduces to Theorem 1.1 when taking all unit weights, $\alpha_{e}=1$. We now demonstrate our main theorem on an example, in the unweighted case.

Example 1.3. Suppose G is the tree with unit edge weights shown in Figure 1, with five leaf vertices and three internal vertices. Let S denote the set of leaf vertices. The corresponding distance submatrix is $D[S]=\left(\begin{array}{lllll}0 & 2 & 3 & 4 & 4 \\ 2 & 0 & 3 & 4 & 4 \\ 3 & 3 & 0 & 3 & 3 \\ 4 & 4 & 3 & 0 & 2 \\ 4 & 4 & 3 & 2 & 0\end{array}\right)$, which has determinant 864 .

Figure 1. Tree with five leaves.
The tree G has 7 edges and $21 S$-rooted spanning forests. There are $19(S, *)$-rooted spanning forests; of the floating components in these forests, 14 have outdegree three, 4 have outdegree four, and 1 has outdegree five. By Theorem 1.1,

$$
\operatorname{det} D[S]=864=(-1)^{4} 2^{3}\left(7 \cdot 21-\left(14 \cdot 1^{2}+4 \cdot 2^{2}+1 \cdot 3^{2}\right)\right)
$$

1.2. Applications. Suppose we fix a tree distance matrix D. It is natural to ask, how do the expressions det $D[S]$ vary as we vary the vertex subset S ? To our knowledge there is no nice behavior among the determinants, but as S varies there is nice behavior of the "normalized" ratios ($\operatorname{det} D[S]) /(\operatorname{cof} D[S])$ which we describe here.

Given a matrix A, let cof A denote the sum of cofactors of A, i.e.

$$
\operatorname{cof} A=\sum_{i=1}^{|S|} \sum_{j=1}^{|S|}(-1)^{i+j} \operatorname{det} A_{i, j}
$$

where $A_{i, j}$ is the submatrix of A that removes the i-th row and the j-th column. If A is invertible, then $\operatorname{cof} A$ is the sum of entries of the matrix inverse A^{-1} multiplied by a factor of $\operatorname{det} A$, i.e. $\operatorname{cof} A=(\operatorname{det} A)\left(\mathbf{1}^{\boldsymbol{\top}} A^{-1} \mathbf{1}\right)$. In [3], Bapat and Sivasubramanian showed the following identity for the sum of cofactors of a distance submatrix $D[S]$ of a tree,

$$
\begin{equation*}
\operatorname{cof} D[S]=(-2)^{|S|-1} \sum_{T \in \mathcal{F}_{1}(G ; S)} w(\bar{T}) \tag{5}
\end{equation*}
$$

Using the Bapat-Sivasubramanian identity (5), an immediate corollary to Theorem 1.2 is the following result:

$$
\begin{equation*}
\frac{\operatorname{det} D[S]}{\operatorname{cof} D[S]}=\frac{1}{2}\left(\sum_{e \in E} \alpha_{e}-\frac{\sum_{F \in \mathcal{F}_{2}(G ; S)} w(\bar{F})\left(\operatorname{deg}^{o}(F, *)-2\right)^{2}}{\sum_{T \in \mathcal{F}_{1}(G ; S)} w(\bar{T})}\right) \tag{6}
\end{equation*}
$$

The expression (6) satisfies a monotonicity condition as we vary the vertex set $S \subset V(G)$.
Theorem 1.4 (Monotonicity of normalized principal minors). If $A, B \subset V(G)$ are nonempty subsets with $A \subset B$, then

$$
\frac{\operatorname{det} D[A]}{\operatorname{cof} D[A]} \leq \frac{\operatorname{det} D[B]}{\operatorname{cof} D[B]}
$$

[mention Devrient's thesis, Property 3.38] The essential observation behind this result is that $\operatorname{det} D[S] / \operatorname{cof} D[S]$ is calculated via the following quadratic optimization problem: for all vectors $\mathbf{u} \in \mathbb{R}^{S}$,

$$
\begin{aligned}
\text { maximize objective function: } & \mathbf{u}^{\top} D[S] \mathbf{u} \\
\text { with constraint: } & \mathbf{1}^{\top} \mathbf{u}=1
\end{aligned}
$$

This result can be shown using Lagrange multipliers, and relies of knowledge of the signature of $D[S]$. For details, see Section 4.

If $S \subset V(G)$ is nonempty, the expression (6) immediately implies the bound

$$
0 \leq \frac{\operatorname{det} D[S]}{\operatorname{cof} D[S]} \leq \frac{1}{2} \sum_{E(G)} \alpha_{e}
$$

We get refined bounds by making use of the monotonicity property, Theorem 1.4.
Theorem 1.5 (Bounds on principal minor ratios). Suppose $G=(V, E)$ is a finite, weighted tree with distance matrix $D^{(\alpha)}$.
(a) If $\operatorname{conv}(S, G)$ denotes the subtree of G consisting of all paths between points of $S \subset V(G)$,

$$
\frac{\operatorname{det} D^{(\alpha)}[S]}{\operatorname{cof} D^{(\alpha)}[S]} \leq \frac{1}{2} \sum_{E(\operatorname{conv}(S, G))} \alpha_{e}
$$

(b) If γ is a simple path between vertices $s_{0}, s_{1} \in S$, then

$$
\frac{1}{2} \sum_{e \in \gamma} \alpha_{e} \leq \frac{\operatorname{det} D^{(\alpha)}[S]}{\operatorname{cof} D^{(\alpha)}[S]}
$$

1.3. Further questions. It is natural to ask whether our results for trees may be generalized to arbitrary finite graphs. We address this in [9], which involves more technical machinery.

A formula for the inverse matrix D^{-1} was found by Graham and Lovász in [5]. Namely,

$$
D^{-1}=-\frac{1}{2} L+\frac{1}{2(n-1)} \mathbf{m} \mathbf{m}^{\top}
$$

where L is the Laplacian matrix and \mathbf{m} is the vector $\mathbf{m}_{v}=2-\operatorname{deg} v$. There is also a weighted version, see equation (9). Does there exist a nice expression for the inverse of the matrix $D[S]$, or for the weighted version?

2. Graphs and spanning forests

For background on enumeration problems for graphs and trees, see Tutte [10, Chapter VI].
Let $G=(V, E)$ be a graph with edge weights $\left\{\alpha_{e}: e \in E\right\}$. For any edge subset $A \subset E$ we define the weight of A as $w(A)=\prod_{e \in A} \alpha_{e}$. We define the co-weight of A as $w(\bar{A})=\prod_{e \notin A} \alpha_{e}$. By abuse of notation, if H is a subgraph of G, we use H to also denote its subset of edges $E(H)$, so e.g. $w(\bar{H})=w(\overline{E(H)})$.

Let M be an $n \times n$ matrix. For a subset $S \subset\{1, \ldots, n\}$, let $M[S]$ denote the submatrix obtained by keeping the S-indexed rows and columns of M. Let $M[\bar{S}]$ denote the submatrix obtained by deleting the S-indexed rows and columns.

If G is a tree, we let $\operatorname{conv}(S, G)$ denote the subtree consisting of the union of all paths between vertices in S, which we call the convex hull of $S \subset G$.
2.1. Spanning trees and forests. A spanning tree of a graph G is a subgraph which is connected, has no cycles, and contains all vertices of G. A spanning forest of a graph G is a subgraph which has no cycles and contains all vertices of G. Let $\kappa(G)$ denote the number of spanning trees of G, and let $\kappa_{r}(G)$ denote the number of r-component spanning forests.

Given a set of vertices $S=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, an S-rooted spanning forest of G is a spanning forest which has exactly one vertex v_{i} in each connected component. Given $s \in S$ and a forest F, we let $F(s)$ denote the s-component of F.

An $(S, *)$-rooted spanning forest of G is a spanning forest which has $|S|+1$ components, where $|S|$ components each contain one vertex of S, and the additional component is disjoint from S. We call the component disjoint from S the floating component, following terminology in [8].

As before, for an $(S, *)$-rooted spanning forest F, we let $F(s)$ denote the s-component of F, and additionally let $F(*)$ denote the floating component. (We may refer to the floating component as the $*$-component of F.)

Let $\kappa(G ; S)$ denote the number of S-rooted spanning forests of G, and let $\kappa_{2}(G ; S)$ denote the number of $(S, *)$-rooted spanning forests. Let $\mathcal{F}_{1}(G ; S)$ denote the set of S-rooted spanning forests of G, and let $\mathcal{F}_{2}(G ; S)$ denote the set of $(S, *)$-rooted spanning forests of G. Note that $\kappa(G ; S)$ is also the number of spanning trees of the quotient graph G / S, which "glues together" all vertices in S as a single vertex, i.e. $\kappa(G ; S)=\kappa(G / S)$.

Example 2.1. Suppose G is the tree with unit edge weights shown below.

Let S be the set of three leaf vertices. Then $\mathcal{F}_{1}(G ; S)$ contains 11 forests, while $\mathcal{F}_{2}(G ; S)$ contains 19 forests. Some of these are shown in Figures 2 and 3, respectively.

Figure 2. Some forests in $\mathcal{F}_{1}(G ; S)$.

Figure 3. Some forests in $\mathcal{F}_{2}(G ; S)$, with floating component highlighted.
2.2. Laplacian matrix. Given a graph $G=(V, E)$, consider an orientation on the edge set, which consists of a pair of functions head : $E \rightarrow V$ and tail : $E \rightarrow V$, such that head (e) and tail (e) are the endpoints of e. We abbreviate head (e) as e^{+}, and tail (e) as e^{-}. We assume all graphs in the paper are equipped with an implicit orientation. The incidence matrix depends on the orientation, but the Laplacian matrix does not.

The incidence matrix of G is the matrix $B \in \mathbb{R}^{V \times E}$ defined by

$$
B_{v, e}=\mathbb{1}\left(v=e^{+}\right)-\mathbb{1}\left(v=e^{-}\right)
$$

Here $\mathbb{1}(\cdot)$ denotes the indicator function. Let $L \in \mathbb{R}^{V \times V}$ denote the Laplacian matrix of G, which is defined by $L=B B^{\top}$. If G is a weighted graph with positive edge weights α_{e} for $e \in E$, let $L^{(\alpha)}$ denote the weighted Laplacian matrix of G, defined by

$$
L^{(\alpha)}=B\left(\begin{array}{ccc}
\alpha_{1}^{-1} & & \\
& \ddots & \\
& & \alpha_{m}^{-1}
\end{array}\right) B^{\top}
$$

It is clear that L and $L^{(\alpha)}$ are positive semidefinite.
Given $S \subset V$, let $L[\bar{S}]$ denote the matrix obtained from L by removing the rows and columns indexed by S. More generally, let $L[\bar{S}, \bar{T}]$ denote the matrix obtained from L by removing the S indexed rows and T-indexed columns. Recall that $\kappa(G ; S)$ denotes the number of S-rooted spanning forests of G. The following theorem relates minors of the (weighted) Laplacian to (weighted) counts of rooted spanning forests.

Theorem 2.2 (Principal-minors matrix tree theorem). Let $G=(V, E)$ be a finite graph
(a) Let L denote the Laplacian matrix of G. Then for any nonempty vertex set $S \subset V$,

$$
\operatorname{det} L[\bar{S}]=\kappa(G ; S)
$$

(b) Let $L^{(\alpha)}$ denote the weighted Laplacian matrix of G, with edge weights $\left\{\alpha_{e}\right\}$. For any nonempty vertex set $S \subset V$,

$$
\operatorname{det} L^{(\alpha)}[\bar{S}]=\sum_{T \in \mathcal{F}_{1}} w(T)^{-1}=\sum_{T \in \mathcal{F}_{1}} w(\bar{T}) \prod_{e \in E} \alpha_{e}^{-1}
$$

where $\mathcal{F}_{1}=\mathcal{F}_{1}(G ; S)$ is the set of S-rooted spanning forests.
Proof. See Tutte [10, Section VI.6, Equation (VI.6.7)] or Chaiken [4] or Bapat [2, Theorem 4.7].
2.3. Tree splits and tree distance. In this section we describe the tree splits associated to a tree, and use their associated indicator functions to give an expression for the tree distance.

Given a tree $G=(V, E)$ and an edge $e \in E$, the edge deletion $G \backslash e$ contains two connected components. Using the implicit orientation on $e=\left(e^{+}, e^{-}\right)$, we let $(G \backslash e)^{+}$denote the component that contains endpoint e^{+}, and let $(G \backslash e)^{-}$denote the other component. For any $e \in E$ and $v \in V$, we let $(G \backslash e)^{v}$ denote the component of $G \backslash e$ containing v, respectively $(G \backslash e)^{\bar{v}}$ for the component not containing v.

Tree splits can be used to express the path distance between vertices in a tree. Given an edge $e \in E$ and vertices $v, w \in V$, let

$$
\delta(e ; v, w)= \begin{cases}1 & \text { if } e \text { separates } v \text { from } w \\ 0 & \text { otherwise }\end{cases}
$$

In other words, $\delta(e ; v, w)=1$ if the vertices v, w are in different components of the tree split $G \backslash e$, and $\delta(e ; v, w)=0$ if they are in the same component. Note that $\delta(e ; v, v)=0$ for any e and v.

We have the following perspectives on the function $\delta(e ; v, w)$.
(i) If we fix e and v, then $\delta(e ; v,-): V(G) \rightarrow\{0,1\}$ is the indicator function for the component $(G \backslash e)^{\bar{v}}$ of the tree split $G \backslash e$ not containing v.
(ii) On the other hand if we fix v and w, then $\delta(-; v, w): E(G) \rightarrow\{0,1\}$ is the indicator function for the unique $v \sim w$ path in G.

Proposition 2.3 (Weighted tree distance). For a tree $G=(V, E)$ with weights $\left\{\alpha_{e}: e \in E\right\}$, the weighted distance function satisfies

$$
d^{(\alpha)}(v, w)=\sum_{e \in E} \alpha_{e} \delta(e ; v, w)
$$

For an unweighted tree, we can express the tree distance $d(v, w)$ as the unweighted sum

$$
d(v, w)=\sum_{e \in E(G)} \delta(e ; v, w)
$$

2.4. Outdegree of forest components. Given a vertex v in a graph, the degree $\operatorname{deg}(v)$ is the number of edges incident to v. A consequence of the "handshake lemma" of graph theory is that for any tree G, we have

$$
\begin{equation*}
\sum_{v \in V(G)}(2-\operatorname{deg}(v))=2 \tag{7}
\end{equation*}
$$

In this section we state a generalization, Lemma 2.4 which will be used later.
Given a connected subgraph $H \subset G$, we define the edge boundary ∂H as the set of edges which join H to its complement; i.e.

$$
\partial H=\{e=\{a, b\} \in E: a \in V(H), b \notin V(H)\}
$$

We define the outdegree of H as the number of edges in its edge boundary, $\operatorname{deg}^{\circ}(H)=|\partial H|$. (The edge boundary and outdegree do not depend on the implicit orientation on E.)

We often use the following special case of the outdegree: We define the outdegree $\operatorname{deg}^{o}(F, s)$ as the number of edges which join $F(s)$ to a different component; i.e.

$$
\begin{equation*}
\operatorname{deg}^{o}(F, s)=|\{e=(a, b) \in E: a \in F(s), b \notin F(s)\}| \tag{8}
\end{equation*}
$$

(Recall that $F(s)$ denotes the s-component of an S-rooted spanning forest F.) If F is a forest in $\mathcal{F}_{2}(G ; S)$, let $\operatorname{deg}^{o}(F, *)$ denote the outdegree of the floating component and $\partial F(*)$ its edge boundary.

Lemma 2.4. Suppose G is a tree.
(a) If $H \subset G$ is a (nonempty) connected subgraph, then

$$
\sum_{v \in V(H)}(2-\operatorname{deg}(v))=2-\operatorname{deg}^{o}(H)
$$

(b) For any fixed edge e and fixed vertex u of G, we have

$$
\sum_{v \in V(G)}(2-\operatorname{deg}(v)) \delta(e ; u, v)=1
$$

Proof. (a) This is straightforward to check by induction on $|V(H)|$, with base case $|V(H)|=1$: if $H=\{v\}$ consists of a single vertex, then $\operatorname{deg}^{o}(H)=\operatorname{deg}(v)$.
(b) Recall that $(G \backslash e)^{\bar{u}}$ denotes the component of the tree split $G \backslash e$ that does not contain u. Its vertices are precisely those v that satisfy $\delta(e ; u, v)=1$. Since this component has a single edge separating it from its complement, $\operatorname{deg}^{o}\left((G \backslash e)^{\bar{u}}\right)=1$ Using part (a), we have

$$
\sum_{v \in V}(2-\operatorname{deg}(v)) \delta(e ; u, v)=\sum_{v \in(G \backslash e)^{\bar{u}}}(2-\operatorname{deg}(v))=2-\operatorname{deg}^{o}\left((G \backslash e)^{\bar{u}}\right)=1
$$

Remark 2.5. A key step in the proof of Theorem 1.2 uses the following "transition structure" which relates the S-rooted spanning forests $\mathcal{F}_{1}(G ; S)$ with $(S, *)$-rooted spanning forests $\mathcal{F}_{2}(G ; S)$, via the operations of edge-deletion and edge-union.

Consider the "deletion" map

$$
E(G) \times \mathcal{F}_{1}(G ; S) \rightarrow \mathcal{F}_{1}(G ; S) \sqcup \mathcal{F}_{2}(G ; S)
$$

defined by

$$
(e, T) \mapsto \begin{cases}T & \text { if } e \notin T \\ T \backslash e & \text { if } e \in T\end{cases}
$$

For a given spanning forest $F \in \mathcal{F}_{2}(G ; S)$, there are exactly $\operatorname{deg}^{o}(F, *)$-many choices of pairs $(e, T) \in$ $E(G) \times \mathcal{F}_{1}(G ; S)$ such that $F=T \backslash e$.

There is an associated "union" map

$$
E(G) \times \mathcal{F}_{2}(G ; S) \longrightarrow \mathcal{F}_{1}(G ; S) \sqcup \mathcal{F}_{2}(G ; S)
$$

defined by

$$
(e, F) \mapsto \begin{cases}F \cup e & \text { if } e \in \partial F(*) \\ F & \text { if } e \notin \partial F(*)\end{cases}
$$

For a spanning forest $T \in \mathcal{F}_{1}(G ; S)$, there are exactly $(|V|-1)$-many choices of pairs $(e, F) \in$ $E(G) \times \mathcal{F}_{2}(G ; S)$ such that $T=F \cup e$ (since $|E(T)|=|V|-1$ for any spanning tree T).
2.5. Symanzik polynomials. We note that the expression in the main theorem, Theorem 1.2, is closely related to Symanzik polynomials, which we recall here.

Given a graph $G=(V, E)$, the first Symanzik polynomial is the homogeneous polynomial in edge-indexed variables $\underline{x}=\left\{x_{e}: e \in E\right\}$ defined by

$$
\psi_{G}(\underline{x})=\sum_{T \in \mathcal{F}_{1}(G)} \prod_{e \notin T} x_{e}
$$

where $\mathcal{F}_{1}(G)$ denotes the set of spanning trees of G.
Consider a "momentum" function $p: V \rightarrow \mathbb{R}$ which satisfies the constraint $\sum_{v \in V} p(v)=0$. Then the second Symanzik polynomial is

$$
\varphi_{G}(p ; \underline{x})=\sum_{F \in \mathcal{F}_{2}(G)}\left(\sum_{v \in F_{1}} p(v)\right)^{2} \prod_{e \notin F} x_{e}
$$

where $\mathcal{F}_{2}(G)$ is the set of two-component spanning forests of G, and F_{1} denotes one of the components of F. It doesn't matter which component we label as F_{1}, since the momemtum constraint implies that $\sum_{v \in F_{1}} p(v)=-\sum_{v \in F_{2}} p(v)$.

In terms of Symanzik polynomials, let ψ and φ denote the first and second Symanzik polynomials of the quotient graph G / S. Let p be the momentum function $p(v)=\operatorname{deg}(v)-2$ for $v \notin S$. We have

$$
\operatorname{det} D[S]=(-1)^{|S|-1} 2^{|S|-2}\left(\left(\sum_{E(G)} \alpha_{e}\right) \psi_{(G / S)}(\underline{\alpha})-\phi_{(G / S)}(p ; \underline{\alpha})\right)
$$

(equivalent to Theorem 1.2), or more succinctly,

$$
\frac{\operatorname{det} D[S]}{\operatorname{cof} D[S]}=\frac{1}{2}\left(\sum_{e \in E} \alpha_{e}-\frac{\varphi_{(G / S)}(p ; \underline{\alpha})}{\psi_{(G / S)}(\underline{\alpha})}\right)
$$

(equivalent to equation (6)).

3. Distance minors: Preliminaries

In this section we recall some results on the distance matrix of a tree.
3.1. Signature and invertibility. Given a distance matrix D of a tree, the submatrix $D[S]$ has nonzero determinant, as long as $|S| \geq 2$. We give a proof in this section, based on finding the signature of $D[S]$ as a bilinear form. The argument in this section, particularly Proposition 3.3, was communicated to the authors by R. Bapat, via personal communication.

We first recall a result of Cauchy, which states that the eigenvalues of $M[\bar{i}]$ "interlace" the eigenvalues of M. Recall that $M[\bar{i}]$ denotes the matrix obtained from M by deleting the i-th row and column.

Proposition 3.1 (Cauchy interlacing). Suppose M is a symmetric real matrix with ordered eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$, and the submatrix $M[\bar{i}]$ has ordered eigenvalues $\mu_{1} \leq \cdots \leq \mu_{n-1}$. Then

$$
\lambda_{1} \leq \mu_{1} \leq \lambda_{2} \leq \cdots \leq \mu_{n-1} \leq \lambda_{n}
$$

Proof. See Horn-Johnson [7, Theorem 4.3.17].
Lemma 3.2 (Bapat [2, Lemma 8.15]). Suppose $D^{(\alpha)}$ is the (weighted) distance matrix of a tree with n vertices. Then $D^{(\alpha)}$ has one positive eigenvalue and $n-1$ negative eigenvalues.

Proof. See Lemma 8.15 of [2]. The proof is by induction on the number of vertices, and uses Cauchy interlacing.

Lemma 8.15 of [2] is stated for a non-weighted distance matrix; however, the same argument applies to a weighted distance matrix by applying Bapat-Kirkland-Neumann's result (3) on the weighted distance matrix determinant [1, Corollary 2.5].
Proposition 3.3. Suppose $D^{(\alpha)}$ is the weighted distance matrix of a tree $G=(V, E)$ and $S \subset V$ is a subset of size $|S| \geq 2$. Then
(a) $D^{(\alpha)}[S]$ has one positive eigenvalue and $|S|-1$ negative eigenvalues;
(b) $\operatorname{det} D^{(\alpha)}[S] \neq 0$.

Proof. (a) We apply decreasing induction on the size of S. If $S=V$, use Lemma 3.2. Now suppose $|S|=k$ where $2 \leq k<n$, and assume by induction hypothesis that the claim holds for all vertex subsets of size greater than k. Let $S^{+} \subset V$ be a set of $k+1$ vertices containing S. The inductive hypothesis states that $D\left[S^{+}\right]$has k negative eigenvalues and one positive eigenvalue, so Cauchy interlacing from $D\left[S^{+}\right]$implies that $D[S]$ has at least $k-1$ negative eigenvalues. Since all diagonal entries of $D[S]$ are zero, $D[S]$ has zero trace. Thus the remaining eigenvalue of $D[S]$ must be positive, as claimed.
(b) This follows from (a).
3.2. Negative definite hyperplane. In this section, we prove that a distance (sub)matrix induces a negative semidefinite quadratic form on the hyperplane of vectors whose coordinates sum to zero. This will be used in Section 4 on quadratic optimization.

Bapat-Kirkland-Neumann [1, Theorem 2.1] proved that

$$
\begin{equation*}
\left(D^{(\alpha)}\right)^{-1}=-\frac{1}{2} L^{(\alpha)}+\frac{1}{2}\left(\sum_{e \in E} \alpha_{e}\right)^{-1} \mathbf{m} \mathbf{m}^{\top} \tag{9}
\end{equation*}
$$

where \mathbf{m} is the vector with components $\mathbf{m}_{v}=2-\operatorname{deg} v$. The unweighted version of (9) appeared earlier in Graham-Lovasz [5, Lemma 1].
Proposition 3.4. Let D denote the weighted distance matrix of a tree, and L the weighted Laplacian matrix. Then

$$
D^{(\alpha)}=-\frac{1}{2} D^{(\alpha)} L^{(\alpha)} D^{(\alpha)}+\frac{1}{2}\left(\sum_{e \in E} \alpha_{e}\right) \mathbf{1 1} 1^{\top} .
$$

Proof. Multiply (9) by the all-ones vector $\mathbf{1}$; since $L^{(\alpha)} \mathbf{1}=0$ and $\mathbf{m}^{\boldsymbol{\top}} \mathbf{1}=2$, we obtain

$$
\left(D^{(\alpha)}\right)^{-1} \mathbf{1}=\left(\sum_{e \in E} \alpha_{e}\right)^{-1} \mathbf{m}
$$

Hence $D^{(\alpha)} \mathbf{m}=\left(\sum_{e \in E} \alpha_{e}\right) \mathbf{1}$. Then multiply (9) by $D^{(\alpha)}$ on both sides.
Proposition 3.5. Suppose D is the (weighted) distance matrix of a tree.
(a) If $\mathbf{u} \in \mathbb{R}^{V}$ is a vector whose coordinates sum to zero, then $\mathbf{u}^{\top} D \mathbf{u} \leq 0$.
(b) If $\mathbf{u} \in \mathbb{R}^{S}$ is a vector whose coordinates sum to zero, then $\mathbf{u}^{\top} D[S] \mathbf{u} \leq 0$.

Proof. (a) By assumption $\mathbf{1}^{\top} \mathbf{u}=0$. Using Proposition 3.4,

$$
\mathbf{u}^{\boldsymbol{\top}} D \mathbf{u}=-\frac{1}{2} \mathbf{u}^{\boldsymbol{\top}} D L D \mathbf{u}+0
$$

It is well-known that the Laplacian matrix is positive semidefinite, so $\mathbf{u}^{\top} D L D \mathbf{u}=(D \mathbf{u})^{\top} L(D \mathbf{u}) \geq 0$. Thus $\mathbf{u}^{\top} D \mathbf{u} \leq 0$ as claimed.
(b) This follows from (a) since $\mathbf{u}^{\top} D[S] \mathbf{u}=\widetilde{\mathbf{u}}^{\top} D \widetilde{\mathbf{u}}$ where $\widetilde{\mathbf{u}}$ is the extension of \mathbf{u} by zeros.

4. Quadratic optimization

In this section, we explain how the quantity $\frac{\operatorname{det} D[S]}{\operatorname{cof} D[S]}$ arises as the solution of the following quadratic optimization problem: for all vectors $\mathbf{u} \in \mathbb{R}^{S}$,

$$
\begin{aligned}
\text { maximize objective function: } & \mathbf{u}^{\top} D[S] \mathbf{u} \\
\text { with constraint: } & \mathbf{1}^{\top} \mathbf{u}=1 .
\end{aligned}
$$

The statement is proved as Proposition 4.1.
Proposition 4.1. If $D[S]$ is a principal submatrix of a distance matrix indexed by S, then

$$
\frac{\operatorname{det} D[S]}{\operatorname{cof} D[S]}=\max \left\{\mathbf{u}^{\boldsymbol{\top}} D[S] \mathbf{u}: \mathbf{u} \in \mathbb{R}^{S}, \mathbf{1}^{\boldsymbol{\top}} \mathbf{u}=1\right\}
$$

where $\operatorname{cof} D[S]$ denotes the sum of cofactors of $D[S]$.
Proof. If $|S|=1$ then $D[S]$ is the zero matrix and the statement is true trivially.
Now assume $|S| \geq 2$. Proposition 3.5 implies that the objective function $\mathbf{u} \mapsto \mathbf{u}^{\boldsymbol{\top}} D[S] \mathbf{u}$ is concave on the domain $1^{\top} \mathbf{u}=1$, so any critical point is a local maximum. The gradient of the objective function is $2 D[S] \mathbf{u}$, and the gradient of the constraint is $\mathbf{1}$. By the theory of Lagrange multipliers, the optimal solution \mathbf{u}^{*} is a vector satisfying

$$
D[S] \mathbf{u}^{*}=\lambda \mathbf{1} \quad \text { for some } \lambda \in \mathbb{R}
$$

The constant λ is in fact the optimal objective value, since

$$
\left(\mathbf{u}^{*}\right)^{\top} D[S] \mathbf{u}^{*}=\left(D[S] \mathbf{u}^{*}\right)^{\top} \mathbf{u}^{*}=\lambda\left(\mathbf{1}^{\top} \mathbf{u}^{*}\right)=\lambda
$$

Here we use the fact that $D[S]$ is symmetric, and the given constraint $\mathbf{1}^{\top} \mathbf{u}=1$.
On the other hand, since $D[S]$ is invertible (Proposition 3.3) we have $\mathbf{u}^{*}=\lambda\left(D[S]^{-1} \mathbf{1}\right)$, so that

$$
1=\mathbf{1}^{\boldsymbol{\top}} \mathbf{u}^{*}=\lambda\left(\mathbf{1}^{\boldsymbol{\top}} D[S]^{-1} \mathbf{1}\right)=\lambda \frac{\operatorname{cof} D[S]}{\operatorname{det} D[S]}
$$

Thus the optimal objective value is $\lambda=\frac{\operatorname{det} D[S]}{\operatorname{cof} D[S]}$.
Remark 4.2. If we consider G as a network of wires with each edge e containing a resistor of resistance α_{e}, then the optimal vector \mathbf{u}^{*} has a physical interpretation as current flow: it records the currents exiting at $s \in S$ when current enters the network in the amount $\frac{1}{2}(\operatorname{deg}(v)-2)$ for each $v \in V$, and the network is grounded at all nodes in S.

We give an explicit combinatorial expression for \mathbf{u}^{*}, up to a normalizing constant, in Definition 5.2. It is a classical result in network theory that this gives the current flow; see Tutte [10, Section VI.6].
4.1. Cofactor sums. Next we recall a connection between minors of the Laplacian matrix and cofactor sums of the distance matrix, when G is a tree. The result is due to Bapat-Sivasubramanian [3]. Recall that cof M denotes the sum of cofactors of M, i.e. cof $M=\sum_{i=1}^{n} \sum_{j=1}^{n}(-1)^{i+j} \operatorname{det} M[\bar{i}, \bar{j}]$ where $M[\bar{i}, \bar{j}]$ denotes the matrix with the i-th row and j-th column deleted.
Theorem 4.3 (Distance submatrix cofactor sums). Given a tree $G=(V, E)$ with edge weights, let $D^{(\alpha)}$ be the weighted distance matrix of G. Let $S \subset V$ be a nonempty subset of vertices. Then

$$
\operatorname{cof} D^{(\alpha)}[S]=(-2)^{|S|-1} \sum_{T \in \mathcal{F}_{1}(G ; S)} w(\bar{T})
$$

Proof. Bapat and Sivasubramanian [3, Theorem 11] show that

$$
\operatorname{cof} D^{(\alpha)}[S]=(-2)^{|S|-1}\left(\prod_{e \in E} \alpha_{e}\right) \operatorname{det} L^{(\alpha)}[\bar{S}]
$$

where $L^{(\alpha)}$ is the weighted Laplacian matrix. Then combine this equation with the matrix tree theorem, Theorem 2.2 (b).

The following result is a direct consequence of theorems of Bapat-Kirkland-Neumann [1] and Bapat-Sivasubramanian [3].
Proposition 4.4. Suppose $D^{(\alpha)}$ is the distance matrix of a weighted tree with edge weights $\left\{\alpha_{e}\right.$: $e \in E\}$. Then

$$
\frac{\operatorname{det} D^{(\alpha)}}{\operatorname{cof} D^{(\alpha)}}=\frac{1}{2} \sum_{e \in E} \alpha_{e}
$$

Proof. Consider applying Theorem 4.3 with $S=V$. In this case $\mathcal{F}_{1}(G ; V)$ consists of the forest with no edges, and for this forest $w(\bar{T})$ is the product of all edge weights. Thus

$$
\operatorname{cof} D^{(\alpha)}=(-2)^{n-1} \prod_{e \in E} \alpha_{e}
$$

Combining this with the Bapat-Kirkland-Neuman formula (3) yields the result.
4.2. Monotonicity. As a consequence of Proposition 4.1, we show that the ratio $\frac{\operatorname{det} D[S]}{\operatorname{cof} D[S]}$ behaves monotonically in S, and deduce further bounds on $\frac{\operatorname{det} D[S]}{\operatorname{cof} D[S]}$.

We first note the following restatement of Proposition 4.1 , viewing \mathbb{R}^{S} as a subspace of \mathbb{R}^{V} where coordinates indexed by $V \backslash S$ are set to zero.

Corollary 4.5. If $D[S]$ is a principal submatrix of a distance matrix indexed by S, then

$$
\frac{\operatorname{det} D[S]}{\operatorname{cof} D[S]}=\max \left\{\mathbf{u}^{\top} D \mathbf{u}: \mathbf{u} \in \mathbb{R}^{V}, \mathbf{1}^{\top} \mathbf{u}=1, \mathbf{u}_{v}=0 \text { if } v \notin S\right\}
$$

where $\operatorname{cof} D[S]$ denotes the sum of cofactors of $D[S]$.

Proof of Theorem 1.4. We are to show that for vertex subsets $A \subset B$, we have $\frac{\operatorname{det} D[A]}{\operatorname{cof} D[A]} \leq \frac{\operatorname{det} D[B]}{\operatorname{cof} D[B]}$. By Corollary 4.5, both values $\frac{\operatorname{det} D[A]}{\operatorname{cof} D[A]}$ and $\frac{\operatorname{det} D[B]}{\operatorname{cof} D[B]}$ arise from optimizing the same objective function on an affine subspace of \mathbb{R}^{V}, but the subspace for A is contained in the subspace for B.

Proof of 1.5. (a) Recall that $\operatorname{conv}(S, G)$ denotes the subgraph of G which is the union of all paths between vertices in S. To see that

$$
\frac{\operatorname{det} D[S]}{\operatorname{cof} D[S]} \leq \frac{1}{2} \sum_{E(\operatorname{conv}(S, G))} \alpha_{e}
$$

take B as the set of all vertices in $\operatorname{conv}(S, G)$. Then $S \subset B$, and apply Theorem 1.4. By Proposition 4.4 we have

$$
\frac{\operatorname{det} D[B]}{\operatorname{cof} D[B]}=\frac{1}{2} \sum_{E(\operatorname{conv}(S, G))} \alpha_{e}
$$

(b) Recall that γ is a simple path between vertices $s_{0}, s_{1} \in S$. To see that

$$
\frac{1}{2} \sum_{e \in \gamma} \alpha_{e} \leq \frac{\operatorname{det} D[S]}{\operatorname{cof} D[S]}
$$

take A as the set of endpoints of $\left\{s_{0}, s_{1}\right\}$. Then $A \subset S$ by assumption, and apply Theorem 1.4. By Proposition 4.4 we have

$$
\frac{\operatorname{det} D[A]}{\operatorname{cof} D[A]}=\frac{1}{2} d\left(s_{0}, s_{1}\right)=\frac{1}{2} \sum_{e \in \gamma} \alpha_{e}
$$

5. Distance minors: Proofs

In this section we prove our main result, Theorem 1.2. Theorem 1.1 follows as an immediate corollary.
5.1. Outline of proof. In Section 4, we showed that $\frac{\operatorname{det} D[S]}{\operatorname{cof} D[S]}$ is the maximum value of the function $\mathbf{u} \mapsto \mathbf{u}^{\boldsymbol{\top}} D[S] \mathbf{u}$ on an affine hyperplane of \mathbb{R}^{S}, and that the maximum is achieved when $D[S] \mathbf{u}^{*}=\lambda \mathbf{1}$. We can thus compute $\operatorname{det} D[S]$ via the following steps.
(i) Find a vector $\mathbf{m} \in \mathbb{R}^{S}$ such that $D[S] \mathbf{m}=\lambda \mathbf{1} \in \mathbb{R}^{S}$.
(ii) Compute the sum of entries of \mathbf{m}, i.e. $\mathbf{1}^{\top} \mathbf{m}$, and normalize $\mathbf{u}^{*}=\frac{\mathbf{m}}{\mathbf{1}^{\top} \mathbf{m}}$. This solves the optimization problem of Section 4.
(iii) Find the optimal objective value $\lambda^{*}=\frac{\lambda}{\mathbf{1}^{\top} \mathbf{m}}$.
(iv) Use the expression for cof $D[S]$ in Theorem 4.3 to compute $\operatorname{det} D[S]=\lambda^{*}(\operatorname{cof} D[S])$.

Example 5.1. Suppose G is the tree with unit edge weights shown below.

If S is the set of leaf vertices, the distance submatrix is $D[S]=\left(\begin{array}{lll}0 & 3 & 4 \\ 3 & 0 & 5 \\ 4 & 5 & 0\end{array}\right)$. Following the steps outlined above:
(i) The vector $\mathbf{m}=\left(\begin{array}{l}5 \\ 8 \\ 9\end{array}\right)$ satsifies $D[S] \mathbf{m}=\lambda \mathbf{1}$ for $\lambda=60$.
(ii) The sum of entries of \mathbf{m} is $\mathbf{1}^{\top} \mathbf{m}=22$.
(iii) We have $\lambda^{*}=\frac{\lambda}{1^{\top} \mathbf{m}}=\frac{30}{11}$.
(iv) The cofactor sum is cof $D[S]=44$, so $\operatorname{det}[S]=\lambda^{*}(\operatorname{cof} D[S])=120$.

It turns out that the entries of \mathbf{m} are combinatorially meaningful (see Definition 5.2), which also gives combinatorial meaning to the constant λ.
5.2. General case. Fix a tree $G=(V, E)$ with edge weights $\left\{\alpha_{e}: e \in E\right\}$ and a nonempty subset $S \subset V$. We first define a vector \mathbf{m} which satisfies the relation $D[S] \mathbf{m}=\lambda \mathbf{1}$ for some λ.

Definition 5.2. Let $\mathbf{m}=\mathbf{m}(G ; S)$ denote the vector in \mathbb{R}^{S} be defined by

$$
\begin{equation*}
\mathbf{m}_{v}=\sum_{T \in \mathcal{F}_{1}(G ; S)} w(\bar{T})\left(2-\operatorname{deg}^{o}(T, v)\right) \quad \text { for each } v \in S \tag{10}
\end{equation*}
$$

where $w(\bar{T})$ is the co-weight of T (see Section 2.4) and $\operatorname{deg}^{o}(T, v)$ is the outdegree of the v-component of T (see Section 2.4, equation (8)).

Let 1 denote the all-ones vector.
Proposition 5.3. Suppose S is nonempty. For the vector $\mathbf{m}=\mathbf{m}(G ; S)$ defined above,
(a) $\mathbf{1}^{\top} \mathbf{m}=2 \sum_{T \in \mathcal{F}_{1}(G ; S)} w(\bar{T})$;
(b) if all edge weights α_{e} are positive, \mathbf{m} is nonzero.

Proof. (a) By Lemma 2.4 we can express $\operatorname{deg}^{o}(T, s)$ as a sum over vertices in $T(s)$,

$$
\mathbf{m}_{s}=\sum_{T \in \mathcal{F}_{1}(G ; S)} w(\bar{T})\left(2-\operatorname{deg}^{o}(T, s)\right)=\sum_{T \in \mathcal{F}_{1}(G ; S)} w(\bar{T})\left(\sum_{v \in T(s)}(2-\operatorname{deg}(v))\right)
$$

Then exchange the order of summation in $\mathbf{1}^{\top} \mathbf{m}$,

$$
\begin{aligned}
\mathbf{1}^{\top} \mathbf{m}=\sum_{s \in S} \mathbf{m}_{s} & =\sum_{s \in S}\left(\sum_{T \in \mathcal{F}_{1}(G ; S)} w(\bar{T}) \sum_{v \in T(s)}(2-\operatorname{deg}(v))\right) \\
& =\sum_{T \in \mathcal{F}_{1}(G ; S)} w(\bar{T})\left(\sum_{s \in S} \sum_{v \in T(s)}(2-\operatorname{deg}(v))\right) .
\end{aligned}
$$

Observe that the inner double sum is simply a sum over $v \in V$, since the vertex sets of $T(s)$ for $s \in S$ form a partition of V by definition of S-rooted spanning forest. Thus

$$
\mathbf{1}^{\top} \mathbf{m}=\sum_{T \in \mathcal{F}_{1}} w(\bar{T})\left(\sum_{v \in V}(2-\operatorname{deg}(v))\right)=\sum_{T \in \mathcal{F}_{1}} w(\bar{T}) \cdot 2
$$

where we apply equation (7) for the last equality.
(b) If all edge weights are positive, then $w(\bar{T})>0$ for all T, and $\mathcal{F}_{1}(G ; S)$ is nonempty as long as S is nonempty. Thus part (a) implies that $\mathbf{1}^{\top} \mathbf{m}>0$.

Corollary 5.4. If G is a graph with unit edge weights $\alpha_{e}=1$, then the vector \mathbf{m} defined in (10) satisfies $\mathbf{1}^{\top} \mathbf{m}=2 \kappa(G ; S)$.

Theorem 5.5. With $\mathbf{m}=\mathbf{m}(G ; S)$ defined as in (10), $D[S] \mathbf{m}=\lambda \mathbf{1}$ for the constant

$$
\lambda=\sum_{E(G)} \alpha_{e} \sum_{\mathcal{F}_{1}(G ; S)} w(\bar{T})-\sum_{\mathcal{F}_{2}(G ; S)} w(\bar{F})\left(2-\operatorname{deg}^{o}(F, *)\right)^{2} .
$$

Proof. For $e \in E$ and $v, w \in V$, let $\delta(e ; v, w)$ denote the function defined in Section 2.3. For any $v \in S$, we have

$$
\begin{align*}
(D[S] \mathbf{m})_{v} & =\sum_{s \in S} d(v, s) \mathbf{m}_{s} \\
& =\sum_{s \in S}\left(\sum_{e \in E(G)} \alpha_{e} \delta(e ; v, s)\right)\left(\sum_{T \in \mathcal{F}_{1}(G ; S)}\left(2-\operatorname{deg}^{o}(T, s)\right) w(\bar{T})\right) \\
& =\sum_{T \in \mathcal{F}_{1}} w(\bar{T}) \sum_{e \in E} \alpha_{e}\left(\sum_{s \in S} \delta(e ; v, s)\left(2-\operatorname{deg}^{o}(T, s)\right)\right) \\
& =\sum_{T \in \mathcal{F}_{1}} w(\bar{T}) \sum_{e \in E} \alpha_{e}\left(\sum_{s \in S} \delta(e ; v, s) \sum_{u \in T(s)}(2-\operatorname{deg}(u))\right) \tag{11}
\end{align*}
$$

where in the last equality, we apply Lemma 2.4 to the subgraph $H=T(s)$.
We introduce additional notation to handle the double sum in parentheses in (11). Each S-rooted spanning tree T naturally induces a surjection $\pi_{T}: V \rightarrow S$, defined by

$$
\pi_{T}(u)=s \quad \text { if and only if } \quad u \in T(s)
$$

Using this notation,

$$
\begin{equation*}
(D[S] \mathbf{m})_{v}=\sum_{T \in \mathcal{F}_{1}} w(\bar{T}) \sum_{e \in E} \alpha_{e}\left(\sum_{u \in V}(2-\operatorname{deg}(u)) \delta\left(e ; v, \pi_{T}(u)\right)\right) \tag{12}
\end{equation*}
$$

We will compare the above expression with the one obtained after replacing $\delta\left(e ; v, \pi_{T}(u)\right)$ with $\delta(e ; v, u)$. From Lemma 2.4 (b), we have $\sum_{u \in V}(2-\operatorname{deg}(u)) \delta(e ; v, u)=1$. Thus

$$
\begin{equation*}
\sum_{T \in \mathcal{F}_{1}} w(\bar{T}) \sum_{e \in E} \alpha_{e}=\sum_{T \in \mathcal{F}_{1}} w(\bar{T}) \sum_{e \in E} \alpha_{e}\left(\sum_{u \in V}(2-\operatorname{deg}(u)) \delta(e ; v, u)\right) \tag{13}
\end{equation*}
$$

By subtracting equation (13) from (12), we obtain

$$
(D[S] \mathbf{m})_{v}-\sum_{T \in \mathcal{F}_{1}} w(\bar{T}) \sum_{e \in E} \alpha_{e}=\sum_{T \in \mathcal{F}_{1}} w(\bar{T}) \sum_{e \in E} \alpha_{e} \sum_{u \in V}(2-\operatorname{deg}(u))\left(\delta\left(e ; v, \pi_{T}(u)\right)-\delta(e ; v, u)\right) .
$$

When $e \in E$ and $v \in V$ are fixed, $u \mapsto \delta(e ; v, u)$ is the indicator function of one component of the principal cut $G \backslash e$. We have

$$
\delta\left(e ; v, \pi_{T}(u)\right)-\delta(e ; v, u)= \begin{cases}0 & \text { if } \delta\left(e ; \pi_{T}(u), u\right)=0 \tag{14}\\ 1 & \text { if } \delta\left(e ; \pi_{T}(u), u\right)=1 \text { and } \delta\left(e ; v, \pi_{T}(u)\right)=1 \\ -1 & \text { if } \delta\left(e ; \pi_{T}(u), u\right)=1 \text { and } \delta\left(e ; v, \pi_{T}(u)\right)=0\end{cases}
$$

Now consider varying u over all vertices, when e, T, and v are fixed. We have the following three cases:

Case 1: if $e \notin T$, then u and $\pi_{T}(u)$ are on the same side of the principal cut $G \backslash e$, for every vertex u. In this case $\delta\left(e ; v, \pi_{T}(\cdot)\right)-\delta(e ; v, \cdot)=0$.

Case 2: if $e \in T$ and $\pi_{T}(e)$ is separated from v by e, then $\delta\left(e ; v, \pi_{T}(\cdot)\right)-\delta(e ; v, \cdot)$ is the indicator function for the floating component of $T \backslash e$. See Figure 4, left.

Case 3: if $e \in T$ and $\pi_{T}(e)$ is on the same component as v from e, then $\delta\left(e ; v, \pi_{T}(\cdot)\right)-\delta(e ; v, \cdot)$ is the negative of the indicator function for the floating component of $T \backslash e$. See Figure 4, right.

Figure 4. Edge $e \in T$ with $\delta\left(e ; v, \pi_{T}(e)\right)=1$ (left) and $\delta\left(e ; v, \pi_{T}(e)\right)=0$ (right). The floating component of $T \backslash e$ is highlighted.

Thus when multiplying the term (14) by $(2-\operatorname{deg}(u))$ and summing over all vertices u, we obtain

$$
\sum_{u \in V}(2-\operatorname{deg}(u))\left(\delta\left(e ; v, \pi_{T}(u)\right)-\delta(e ; v, u)\right)= \begin{cases}0 & \text { if } e \notin T \\ 2-\operatorname{deg}^{o}(T \backslash e, *) & \text { if } e \in T\left(s_{0}\right) \text { and } \delta\left(e ; v, s_{0}\right)=1 \\ -\left(2-\operatorname{deg}^{o}(T \backslash e, *)\right) & \text { if } e \in T\left(s_{0}\right) \text { and } \delta\left(e ; v, s_{0}\right)=0\end{cases}
$$

Thus

$$
\begin{align*}
& (D[S] \mathbf{m})_{v}-\sum_{T \in \mathcal{F}_{1}} w(\bar{T}) \sum_{e \in E} \alpha_{e} \\
& \quad=\sum_{T \in \mathcal{F}_{1}} w(\bar{T}) \sum_{e \in T} \alpha_{e}\left(2-\operatorname{deg}^{o}(T \backslash e, *)\right)\left(\mathbb{1}\left(\delta\left(e ; v, \pi_{T}(e)\right)=1\right)-\mathbb{1}\left(\delta\left(e ; v, \pi_{T}(e)\right)=0\right)\right) \tag{15}
\end{align*}
$$

We now rewrite the above expression in terms of $\mathcal{F}_{2}(G ; S)$. For the rest of the argument, let

$$
(\star)=(D[S] \mathbf{m})_{v}-\sum_{T \in \mathcal{F}_{1}} w(\bar{T}) \sum_{e \in E} \alpha_{e}
$$

Observe in (15) that the deletion $T \backslash e$ is an $(S, *)$-rooted spanning forest of G, and that the corresponding weights satisfy

$$
w(\bar{F})=\alpha_{e} \cdot w(\bar{T}) \quad \text { if } \quad F=T \backslash e
$$

Note that $F=T \backslash e$ is equivalent to $T=F \cup e$, and in particular this only occurs when we choose the edge e to be in the floating boundary $\partial F(*)$.

Thus

$$
\begin{aligned}
&(\star)=\sum_{F \in \mathcal{F}_{2}} w(\bar{F})\left(2-\operatorname{deg}^{o}(F, *)\right) \sum_{e \in \partial F}\left(\mathbb{1}\left(\delta\left(e ; v, \pi_{(F \cup e)}(e)\right)=1\right)-\mathbb{1}\left(\delta\left(e ; v, \pi_{(F \cup e)}(e)\right)=0\right)\right) \\
&=\sum_{F \in \mathcal{F}_{2}} w(\bar{F})\left(2-\operatorname{deg}^{o}(F, *)\right)\left(\#\left\{e \in \partial F: \delta\left(e ; v, \pi_{T}(e)\right)=1 \text { for } T=F \cup e\right\}\right. \\
&\left.-\#\left\{e \in \partial F: \delta\left(e ; v, \pi_{T}(e)\right)=0 \text { for } T=F \cup e\right\}\right)
\end{aligned}
$$

Now for any $e \notin F$, let $\delta(e ; v, F(*))=\delta(e ; v, x)$ for any $x \in F(*)$, i.e.

$$
\delta(e ; v, F(*))= \begin{cases}1 & \text { if } e \text { lies on path from } v \text { to } F(*) \\ 0 & \text { otherwise }\end{cases}
$$

The condition that $\delta\left(e ; v, \pi_{(F \cup e)}(e)\right)=1$ (respectively $\left.\delta\left(e ; v, \pi_{(F \cup e)}(e)\right)=0\right)$ is equivalent to $\delta(e ; v, F(*))=0$ (respectively $\delta(e ; v, F(*))=1)$. For an illustration, compare Figures 5 and 6. Thus

$$
\begin{aligned}
& (\star)=\sum_{F \in \mathcal{F}_{2}} w(\bar{F})\left(2-\operatorname{deg}^{o}(F, *)\right)(\#\{e \in \partial F(*): \delta(e ; v, F(*))=0\} \\
& \\
& \quad-\#\{e \in \partial F(*): \delta(e ; v, F(*))=1\}) .
\end{aligned}
$$

Finally, we observe that for any forest F in $\mathcal{F}_{2}(G ; S)$, there is exactly one edge e in the boundary $\partial F(*)$ of the floating component which satisfies $\delta(e ; v, F(*))=1$, namely the unique boundary edge on the path from the floating component $F(*)$ to v. Hence

$$
\begin{aligned}
& \#\{e \in \partial F(*): \delta(e ; v, F(*))=1\}=1, \quad \text { and } \\
& \#\{e \in \partial F(*): \delta(e ; v, F(*))=0\}=\operatorname{deg}^{o}(F, *)-1 .
\end{aligned}
$$

Thus the previous expression (\star) simplifies as

$$
\begin{aligned}
(\star) & =\sum_{F \in \mathcal{F}_{2}} w(\bar{F})\left(2-\operatorname{deg}^{o}(F, *)\right)\left(\left(\operatorname{deg}^{o}(F, *)-1\right)-(1)\right) \\
& =-\sum_{F \in \mathcal{F}_{2}} w(\bar{F})\left(2-\operatorname{deg}^{o}(F, *)\right)^{2}
\end{aligned}
$$

as desired.

Figure 5. Edge $e \in \partial F(*)$ with $\delta(e ; v, F(*))=0$ (left) and $\delta(e ; v, F(*))=1$ (right). The floating component $F(*)$ is highlighted.

Figure 6. Edges $e \in \partial F(*)$ with $\delta\left(e ; v, \pi_{(F \cup e)}(e)\right)=1$ (left) and $\delta\left(e ; v, \pi_{(F \cup e)}(e)\right)=0$ (right).

Finally we can prove our main theorem: for any nonempty subset $S \subset V(G)$,

$$
\begin{equation*}
\operatorname{det} D[S]=(-1)^{|S|-1} 2^{|S|-2}\left(\sum_{E(G)} \alpha_{e} \sum_{\mathcal{F}_{1}(G ; S)} w(\bar{T})-\sum_{\mathcal{F}_{2}(G ; S)} w(\bar{F})\left(\operatorname{deg}^{o}(F, *)-2\right)^{2}\right) \tag{16}
\end{equation*}
$$

Proof of Theorem 1.2. First, suppose $|S|=1$. Then $D[S]$ is the zero matrix, and we must show that the right-hand side is zero. Since G is a tree, $\mathcal{F}_{1}(G ;\{v\})$ consists of the tree G itself, with co-weight $w(\bar{G})=1$. Moreover, the subgraphs in $\mathcal{F}_{2}(G ;\{v\})$ are precisely the tree splits $G \backslash e$, and for each $F=G \backslash e$ we have $w(\bar{F})=\alpha_{e}$ and $\operatorname{deg}^{o}(F, *)-2=-1$. This shows that the right-hand size of (16) is zero.

Next, suppose $|S| \geq 2$. Proposition 3.3 states that $D[S]$ is nonsingular, so we may use the inverse matrix identity

$$
\begin{equation*}
\mathbf{1}^{\boldsymbol{\top}} D[S]^{-1} \mathbf{1}=\frac{\operatorname{cof} D[S]}{\operatorname{det} D[S]} \tag{17}
\end{equation*}
$$

Let $\mathbf{m}=\mathbf{m}(G ; S)$ denote the vector (10). By Proposition 5.3 (a) and Theorem 4.3,

$$
\mathbf{1}^{\top} \mathbf{m}=2 \sum_{T \in \mathcal{F}_{1}(G ; S)} w(\bar{T})=\frac{\operatorname{cof} D[S]}{(-1)^{1-|S|} 2^{2-|S|}}
$$

Theorem 5.5 states that $D[S] \mathbf{m}=\lambda \mathbf{1}$ for some constant λ, which is nonzero since $D[S]$ is invertible and \mathbf{m} is nonzero, c.f. Proposition 5.3 (b). Hence

$$
\begin{equation*}
\mathbf{1}^{\boldsymbol{\top}} D[S]^{-1} \mathbf{1}=\lambda^{-1} \mathbf{1}^{\boldsymbol{\top}} \mathbf{m}=\frac{\operatorname{cof} D[S]}{(-1)^{|S|-1} 2^{|S|-1} \lambda} \tag{18}
\end{equation*}
$$

Comparing (17) with (18) gives the desired result, $\operatorname{det} D[S]=(-1)^{|S|-1} 2^{|S|-1} \lambda$.
Proof of Theorem 1.1. Set all weights α_{e} to 1 in Theorem 1.2. In this case, the weights $w(\bar{T})=1$ and $w(\bar{F})=2$ for all forests T and F, and

$$
\sum_{e \in E} \alpha_{e}=n-1, \quad \sum_{T \in \mathcal{F}_{1}(G ; S)} w(\bar{T})=\kappa_{1}(G ; S)
$$

Remark 5.6. It is worth observing that depending on the chosen subset $S \subset V$, the distances appearing in the submatrix $D[S]$ may ignore a large part of the ambient tree G. We could instead replace G by the subtree $\operatorname{conv}(S, G)$ consisting of the union of all paths between vertices in S, which we call the convex hull of $S \subset G$. To apply formula (2) or (4) "efficiently," we should replace G on the right-hand side with the subtree $\operatorname{conv}(S, G)$. However, the formulas as stated are true even without this replacement due to cancellation of terms.

6. Examples

Example 6.1. Suppose G is a tree consisting of three edges joined at a central vertex.

First, suppose $S=V$. The corresponding distance matrix is

$$
D[V]=\left(\begin{array}{cccc}
0 & a & b & c \\
a & 0 & a+b & a+c \\
b & a+b & 0 & b+c \\
c & a+c & b+c & 0
\end{array}\right)
$$

which has determinant $\operatorname{det} D[S]=-4(a+b+c) a b c$.
Next, suppose S consists of the leaf vertices $\{u, v, w\}$. Then

$$
D[S]=\left(\begin{array}{ccc}
0 & a+b & a+c \\
a+b & 0 & b+c \\
a+c & b+c & 0
\end{array}\right)
$$

which has determinant $\operatorname{det} D[S]=2(a+b)(a+c)(b+c)=2((a+b+c)(a b+a c+b c)-a b c)$. The "special vector" that satisfies $D[S] \mathbf{m}=\lambda \mathbf{1}$ in this example is $\mathbf{m}=\left(\begin{array}{c}a b+a c \\ a b+b c \\ a c+b c\end{array}\right)$.

Example 6.2. Suppose G is the tree with unit edge weights shown below, with five leaf vertices.

Let S denote the set of five leaf vertices. Then

$$
D[S]=\left(\begin{array}{ccccc}
0 & 2 & 3 & 3 & 3 \\
2 & 0 & 3 & 3 & 3 \\
3 & 3 & 0 & 2 & 2 \\
3 & 3 & 2 & 0 & 2 \\
3 & 3 & 2 & 2 & 0
\end{array}\right)
$$

There are 11 forests in $\mathcal{F}_{1}(G ; S)$:

There are 6 forests in $\mathcal{F}_{2}(G ; S)$:

The determinant of the distance submatrix is

$$
\operatorname{det} D[S]=368=(-1)^{4} 2^{3}\left(6 \cdot 11-\left(3 \cdot 1^{2}+2 \cdot 2^{2}+1 \cdot 3^{2}\right)\right)
$$

and the special vector is $\mathbf{m}=\left(\begin{array}{l}5 \\ 5 \\ 4 \\ 4 \\ 4\end{array}\right)$.
Example 6.3. Suppose G is the tree with edge weights shown in Figure 7, with four leaf vertices and two internal vertices. Let S denote the set of four leaf vertices. Then

$$
\begin{gathered}
D[S]=\left(\begin{array}{cccc}
0 & a+b & a+c+d & a+c+e \\
a+b & 0 & b+c+d & b+c+e \\
a+c+d & b+c+d & 0 & d+e \\
a+c+e & b+c+e & d+e & 0
\end{array}\right) \\
\text { and } \mathbf{m}=\left(\begin{array}{ccccc}
a b d & +a b e & +a c d & +a c e & +a d e \\
a b d & +a b e & & & \\
a b d & -a b e & +a c d e & +b c d & +b c e \\
-a b d & +a b e & +a d e & +b d e \\
- & +a c e & +a d e & & +b c d
\end{array}\right. \\
\hline
\end{gathered}
$$

The determinant of the distance submatrix is

$$
\begin{aligned}
\operatorname{det} D[S]=(-1)^{3} 2^{2} & ((a+b+c+d+e) \cdot(a b d+a b e+a c d+a c e+a d e+b c d+b c e+b d e) \\
& \left.-\left(1^{2}(a b c d+a b c e+a c d e+b c d e)+2^{2}(a b d e)\right)\right)
\end{aligned}
$$

Figure 7. Tree with four leaves, and varying edge weights.

Acknowledgements

The authors would like to thank Ravindra Bapat for helpful discussion, in particular for providing a proof of Proposition 3.3.

References

[1] R. Bapat, S. J. Kirkland, and M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005), 193-209. MR2133282 个2, 8, 10
[2] R. B. Bapat, Graphs and matrices, Universitext, Springer, London; Hindustan Book Agency, New Delhi, 2010. MR2797201 $\uparrow 5,8$
[3] R. B. Bapat and Sivaramakrishnan Sivasubramanian, Identities for minors of the Laplacian, resistance and distance matrices, Linear Algebra Appl. 435 (2011), no. 6, 1479-1489. MR2807165 $\uparrow 3,10$
[4] Seth Chaiken, A combinatorial proof of the all minors matrix tree theorem, SIAM J. Algebraic Discrete Methods 3 (1982), no. 3, 319-329. MR666857 $\uparrow 5$
[5] R. L. Graham and L. Lovász, Distance matrix polynomials of trees, Adv. in Math. 29 (1978), no. 1, 60-88. MR480119 $\uparrow 4,9$
[6] R. L. Graham and H. O. Pollak, On the addressing problem for loop switching, Bell System Tech. J. 50 (1971), 2495-2519. MR289210 $\uparrow 1$
[7] Roger A. Horn and Charles R. Johnson, Matrix analysis, Second, Cambridge University Press, Cambridge, 2013. MR2978290 $\uparrow 8$
[8] Adrien Kassel, Richard Kenyon, and Wei Wu, Random two-component spanning forests, Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015), no. 4, 1457-1464. MR3414453 $\uparrow 4$
[9] D. H. Richman, F. Shokrieh, and C. Wu, Capacity on metric graphs, 2023. in preparation. $\uparrow 4$
[10] W. T. Tutte, Graph theory, Encycl. Math. Appl., vol. 21, Cambridge University Press, Cambridge, 1984 (English). $\uparrow 4,5,10$

[^0]: Date: v1, December 18, 2023 (Preliminary draft, not for circulation).
 2020 Mathematics Subject Classification. Primary 05C50; Secondary 05C05, 05C12, 05C30, 31C15.

