
MINORS OF TREE DISTANCE MATRICES

HARRY RICHMAN, FARBOD SHOKRIEH, AND CHENXI WU

Abstract. We prove that the principal minors of the distance matrix of a tree satisfy a combinato-
rial expression involving counts of rooted spanning forests of the underlying tree. This generalizes

a result of Graham and Pollak. We also give such an expression for the case of edge-weighted
trees.

Contents

1. Introduction 1
2. Graphs and spanning forests 4
3. Distance minors: Preliminaries 8
4. Quadratic optimization 9
5. Distance minors: Proofs 11
6. Examples 16
Acknowledgements 18
References 18

1. Introduction

Suppose G = (V,E) is a tree with n vertices. Let D denote the distance matrix of G. In [6],
Graham and Pollak proved that

(1) detD = (−1)n−12n−2(n− 1).

This identity is remarkable in that the result does not depend on the tree structure, beyond the
number of vertices. The identity (1) was motivated by a problem in data communication, and
inspired much further research on distance matrices.

The main result of this paper is to generalize (1) by replacing detD with any of its principal
minors. For a subset S ⊂ V (G), let D[S] denote the submatrix consisting of the S-indexed rows
and columns of D.

Theorem 1.1. Suppose G is a tree with n vertices, and distance matrix D. Let S ⊂ V (G) be a
nonempty subset of vertices. Then

(2) detD[S] = (−1)|S|−12|S|−2

(n− 1)κ(G;S)−
∑

F2(G;S)

(dego(F, ∗)− 2)
2

 ,

where κ(G;S) is the number of S-rooted spanning forests of G, F2(G;S) is the set of (S, ∗)-rooted
spanning forests of G, and dego(F, ∗) denotes the outdegree of the floating component of F .
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For definitions of (S, ∗)-rooted spanning forests and other terminology, see Section 2. When
S = V is the full vertex set, the set of V -rooted spanning forests is a singleton, consisting of the
subgraph with no edges, so κ(G;V ) = 1; and moreover the set F2(G;V ) of (V, ∗)-rooted spanning
forests is empty. Thus (2) recovers the Graham–Pollak identity (1) when S = V .

1.1. Weighted trees. If {αe : e ∈ E} is a collection of positive edge weights, the α-distance matrix
D(α) is defined by setting the (u, v)-entry to the sum of the weights αe along the unique path from
u to v. The relation (1) has an analogue for the weighted distance matrix,

(3) detD(α) = (−1)n−12n−2
∑
e∈E

αe

∏
e∈E

αe,

which was proved by Bapat–Kirkland–Neumann [1]. The weighted identity (3) reduces to (1) when
taking all unit weights, αe = 1. We prove the following weighted version of our main theorem.

Theorem 1.2. Suppose G = (V,E) is a finite, weighted tree with edge weights {αe : e ∈ E}, and
weighted distance matrix D = D(α). For any nonempty subset S ⊂ V , we have

(4) detD(α)[S] = (−1)|S|−12|S|−2

∑
E(G)

αe

∑
F1(G;S)

w(T )−
∑

F2(G;S)

w(F ) (dego(F, ∗)− 2)2

 ,

where F1(G;S) is the set of S-rooted spanning forests of G, F2(G;S) is the set of (S, ∗)-rooted
spanning forests of G, w(T ) and w(F ) denote the co-weights of the forests T and F , and dego(F, ∗)
is the outdegree of the floating component of F , as above.

Theorem 1.2 reduces to Theorem 1.1 when taking all unit weights, αe = 1. We now demonstrate
our main theorem on an example, in the unweighted case.

Example 1.3. Suppose G is the tree with unit edge weights shown in Figure 1, with five leaf
vertices and three internal vertices. Let S denote the set of leaf vertices. The corresponding distance

submatrix is D[S] =


0 2 3 4 4
2 0 3 4 4
3 3 0 3 3
4 4 3 0 2
4 4 3 2 0

 , which has determinant 864.

1

2
3

4

5

Figure 1. Tree with five leaves.

The tree G has 7 edges and 21 S-rooted spanning forests. There are 19 (S, ∗)-rooted spanning
forests; of the floating components in these forests, 14 have outdegree three, 4 have outdegree four,
and 1 has outdegree five. By Theorem 1.1,

detD[S] = 864 = (−1)4 23
(
7 · 21− (14 · 12 + 4 · 22 + 1 · 32)

)
.

1.2. Applications. Suppose we fix a tree distance matrix D. It is natural to ask, how do the
expressions detD[S] vary as we vary the vertex subset S? To our knowledge there is no nice
behavior among the determinants, but as S varies there is nice behavior of the “normalized” ratios
(detD[S])/(cofD[S]) which we describe here.
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Given a matrix A, let cof A denote the sum of cofactors of A, i.e.

cof A =

|S|∑
i=1

|S|∑
j=1

(−1)i+j detAi,j

where Ai,j is the submatrix of A that removes the i-th row and the j-th column. If A is invertible,
then cof A is the sum of entries of the matrix inverse A−1 multiplied by a factor of detA, i.e.
cof A = (detA)(1⊺A−11). In [3], Bapat and Sivasubramanian showed the following identity for the
sum of cofactors of a distance submatrix D[S] of a tree,

(5) cofD[S] = (−2)|S|−1
∑

T∈F1(G;S)

w(T ).

Using the Bapat–Sivasubramanian identity (5), an immediate corollary to Theorem 1.2 is the fol-
lowing result:

(6)
detD[S]

cofD[S]
=

1

2

(∑
e∈E

αe −
∑

F∈F2(G;S) w(F ) (deg
o(F, ∗)− 2)2∑

T∈F1(G;S) w(T )

)
.

The expression (6) satisfies a monotonicity condition as we vary the vertex set S ⊂ V (G).

Theorem 1.4 (Monotonicity of normalized principal minors). If A,B ⊂ V (G) are nonempty subsets
with A ⊂ B, then

detD[A]

cofD[A]
≤ detD[B]

cofD[B]
.

[mention Devrient’s thesis, Property 3.38] The essential observation behind this result is that
detD[S]/ cofD[S] is calculated via the following quadratic optimization problem: for all vectors
u ∈ RS ,

maximize objective function: u⊺D[S]u

with constraint: 1⊺u = 1.

This result can be shown using Lagrange multipliers, and relies of knowledge of the signature of
D[S]. For details, see Section 4.

If S ⊂ V (G) is nonempty, the expression (6) immediately implies the bound

0 ≤ detD[S]

cofD[S]
≤ 1

2

∑
E(G)

αe.

We get refined bounds by making use of the monotonicity property, Theorem 1.4.

Theorem 1.5 (Bounds on principal minor ratios). Suppose G = (V,E) is a finite, weighted tree
with distance matrix D(α).

(a) If conv(S,G) denotes the subtree of G consisting of all paths between points of S ⊂ V (G),

detD(α)[S]

cofD(α)[S]
≤ 1

2

∑
E(conv(S,G))

αe.

(b) If γ is a simple path between vertices s0, s1 ∈ S, then

1

2

∑
e∈γ

αe ≤
detD(α)[S]

cofD(α)[S]
.
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1.3. Further questions. It is natural to ask whether our results for trees may be generalized to
arbitrary finite graphs. We address this in [9], which involves more technical machinery.

A formula for the inverse matrix D−1 was found by Graham and Lovász in [5]. Namely,

D−1 = −1

2
L+

1

2(n− 1)
mm⊺

where L is the Laplacian matrix and m is the vector mv = 2 − deg v. There is also a weighted
version, see equation (9). Does there exist a nice expression for the inverse of the matrix D[S], or
for the weighted version?

2. Graphs and spanning forests

For background on enumeration problems for graphs and trees, see Tutte [10, Chapter VI].
Let G = (V,E) be a graph with edge weights {αe : e ∈ E}. For any edge subset A ⊂ E we

define the weight of A as w(A) =
∏
e∈A

αe. We define the co-weight of A as w(A) =
∏
e ̸∈A

αe. By abuse

of notation, if H is a subgraph of G, we use H to also denote its subset of edges E(H), so e.g.

w(H) = w(E(H)).
Let M be an n×n matrix. For a subset S ⊂ {1, . . . , n}, let M [S] denote the submatrix obtained

by keeping the S-indexed rows and columns of M . Let M [S] denote the submatrix obtained by
deleting the S-indexed rows and columns.

If G is a tree, we let conv(S,G) denote the subtree consisting of the union of all paths between
vertices in S, which we call the convex hull of S ⊂ G.

2.1. Spanning trees and forests. A spanning tree of a graph G is a subgraph which is connected,
has no cycles, and contains all vertices of G. A spanning forest of a graph G is a subgraph which
has no cycles and contains all vertices of G. Let κ(G) denote the number of spanning trees of G,
and let κr(G) denote the number of r-component spanning forests.

Given a set of vertices S = {v1, v2, . . . , vr}, an S-rooted spanning forest of G is a spanning forest
which has exactly one vertex vi in each connected component. Given s ∈ S and a forest F , we let
F (s) denote the s-component of F .

An (S, ∗)-rooted spanning forest of G is a spanning forest which has |S| + 1 components, where
|S| components each contain one vertex of S, and the additional component is disjoint from S. We
call the component disjoint from S the floating component, following terminology in [8].

As before, for an (S, ∗)-rooted spanning forest F , we let F (s) denote the s-component of F , and
additionally let F (∗) denote the floating component. (We may refer to the floating component as
the ∗-component of F .)

Let κ(G;S) denote the number of S-rooted spanning forests of G, and let κ2(G;S) denote the
number of (S, ∗)-rooted spanning forests. Let F1(G;S) denote the set of S-rooted spanning forests
of G, and let F2(G;S) denote the set of (S, ∗)-rooted spanning forests of G. Note that κ(G;S) is
also the number of spanning trees of the quotient graph G/S, which “glues together” all vertices in
S as a single vertex, i.e. κ(G;S) = κ(G/S).

Example 2.1. Suppose G is the tree with unit edge weights shown below.

v2 v3

v1

Let S be the set of three leaf vertices. Then F1(G;S) contains 11 forests, while F2(G;S) contains
19 forests. Some of these are shown in Figures 2 and 3, respectively.
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Figure 2. Some forests in F1(G;S).

Figure 3. Some forests in F2(G;S), with floating component highlighted.

2.2. Laplacian matrix. Given a graph G = (V,E), consider an orientation on the edge set, which
consists of a pair of functions head : E → V and tail : E → V , such that head(e) and tail(e) are
the endpoints of e. We abbreviate head(e) as e+, and tail(e) as e−. We assume all graphs in the
paper are equipped with an implicit orientation. The incidence matrix depends on the orientation,
but the Laplacian matrix does not.

The incidence matrix of G is the matrix B ∈ RV×E defined by

Bv,e = 1(v = e+)− 1(v = e−).

Here 1(·) denotes the indicator function. Let L ∈ RV×V denote the Laplacian matrix of G, which
is defined by L = BB⊺. If G is a weighted graph with positive edge weights αe for e ∈ E, let L(α)

denote the weighted Laplacian matrix of G, defined by

L(α) = B

α
−1
1

. . .

α−1
m

B⊺.

It is clear that L and L(α) are positive semidefinite.
Given S ⊂ V , let L[S] denote the matrix obtained from L by removing the rows and columns

indexed by S. More generally, let L[S, T ] denote the matrix obtained from L by removing the S-
indexed rows and T -indexed columns. Recall that κ(G;S) denotes the number of S-rooted spanning
forests of G. The following theorem relates minors of the (weighted) Laplacian to (weighted) counts
of rooted spanning forests.

Theorem 2.2 (Principal-minors matrix tree theorem). Let G = (V,E) be a finite graph.

(a) Let L denote the Laplacian matrix of G. Then for any nonempty vertex set S ⊂ V ,

detL[S] = κ(G;S).

(b) Let L(α) denote the weighted Laplacian matrix of G, with edge weights {αe}. For any nonempty
vertex set S ⊂ V ,

detL(α)[S] =
∑
T∈F1

w(T )−1 =
∑
T∈F1

w(T )
∏
e∈E

α−1
e

where F1 = F1(G;S) is the set of S-rooted spanning forests.

Proof. See Tutte [10, Section VI.6, Equation (VI.6.7)] or Chaiken [4] or Bapat [2, Theorem 4.7]. □

2.3. Tree splits and tree distance. In this section we describe the tree splits associated to a tree,
and use their associated indicator functions to give an expression for the tree distance.

Given a tree G = (V,E) and an edge e ∈ E, the edge deletion G \ e contains two connected
components. Using the implicit orientation on e = (e+, e−), we let (G \ e)+ denote the component
that contains endpoint e+, and let (G \ e)− denote the other component. For any e ∈ E and v ∈ V ,
we let (G \ e)v denote the component of G \ e containing v, respectively (G \ e)v for the component
not containing v.
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Tree splits can be used to express the path distance between vertices in a tree. Given an edge
e ∈ E and vertices v, w ∈ V , let

δ(e; v, w) =

{
1 if e separates v from w,

0 otherwise.

In other words, δ(e; v, w) = 1 if the vertices v, w are in different components of the tree split G \ e,
and δ(e; v, w) = 0 if they are in the same component. Note that δ(e; v, v) = 0 for any e and v.

We have the following perspectives on the function δ(e; v, w).

(i) If we fix e and v, then δ(e; v,−) : V (G) → {0, 1} is the indicator function for the component
(G \ e)v of the tree split G \ e not containing v.

(ii) On the other hand if we fix v and w, then δ(−; v, w) : E(G) → {0, 1} is the indicator function
for the unique v ∼ w path in G.

Proposition 2.3 (Weighted tree distance). For a tree G = (V,E) with weights {αe : e ∈ E}, the
weighted distance function satisfies

d(α)(v, w) =
∑
e∈E

αe δ(e; v, w).

For an unweighted tree, we can express the tree distance d(v, w) as the unweighted sum

d(v, w) =
∑

e∈E(G)

δ(e; v, w).

2.4. Outdegree of forest components. Given a vertex v in a graph, the degree deg(v) is the
number of edges incident to v. A consequence of the “handshake lemma” of graph theory is that for
any tree G, we have

(7)
∑

v∈V (G)

(2− deg(v)) = 2.

In this section we state a generalization, Lemma 2.4 which will be used later.
Given a connected subgraph H ⊂ G, we define the edge boundary ∂H as the set of edges which

join H to its complement; i.e.

∂H = {e = {a, b} ∈ E : a ∈ V (H), b ̸∈ V (H)}.

We define the outdegree of H as the number of edges in its edge boundary, dego(H) = |∂H|. (The
edge boundary and outdegree do not depend on the implicit orientation on E.)

We often use the following special case of the outdegree: We define the outdegree dego(F, s) as
the number of edges which join F (s) to a different component; i.e.

(8) dego(F, s) = |{e = (a, b) ∈ E : a ∈ F (s), b ̸∈ F (s)}|.

(Recall that F (s) denotes the s-component of an S-rooted spanning forest F .) If F is a forest in
F2(G;S), let deg

o(F, ∗) denote the outdegree of the floating component and ∂F (∗) its edge boundary.

Lemma 2.4. Suppose G is a tree.

(a) If H ⊂ G is a (nonempty) connected subgraph, then∑
v∈V (H)

(2− deg(v)) = 2− dego(H).

(b) For any fixed edge e and fixed vertex u of G, we have∑
v∈V (G)

(2− deg(v)) δ(e;u, v) = 1.
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Proof. (a) This is straightforward to check by induction on |V (H)|, with base case |V (H)| = 1: if
H = {v} consists of a single vertex, then dego(H) = deg(v).

(b) Recall that (G \ e)u denotes the component of the tree split G \ e that does not contain u.
Its vertices are precisely those v that satisfy δ(e;u, v) = 1. Since this component has a single edge
separating it from its complement, dego((G \ e)u) = 1 Using part (a), we have∑

v∈V

(2− deg(v))δ(e;u, v) =
∑

v∈(G\e)u
(2− deg(v)) = 2− dego((G \ e)u) = 1. □

Remark 2.5. A key step in the proof of Theorem 1.2 uses the following “transition structure”
which relates the S-rooted spanning forests F1(G;S) with (S, ∗)-rooted spanning forests F2(G;S),
via the operations of edge-deletion and edge-union.

Consider the “deletion” map

E(G)×F1(G;S) → F1(G;S) ⊔ F2(G;S)

defined by

(e, T ) 7→

{
T if e ̸∈ T,

T \ e if e ∈ T.

For a given spanning forest F ∈ F2(G;S), there are exactly dego(F, ∗)-many choices of pairs (e, T ) ∈
E(G)×F1(G;S) such that F = T \ e.

There is an associated “union” map

E(G)×F2(G;S) −→ F1(G;S) ⊔ F2(G;S)

defined by

(e, F ) 7→

{
F ∪ e if e ∈ ∂F (∗),
F if e ̸∈ ∂F (∗)

For a spanning forest T ∈ F1(G;S), there are exactly (|V | − 1)-many choices of pairs (e, F ) ∈
E(G)×F2(G;S) such that T = F ∪ e (since |E(T )| = |V | − 1 for any spanning tree T ).

2.5. Symanzik polynomials. We note that the expression in the main theorem, Theorem 1.2, is
closely related to Symanzik polynomials, which we recall here.

Given a graph G = (V,E), the first Symanzik polynomial is the homogeneous polynomial in
edge-indexed variables x = {xe : e ∈ E} defined by

ψG(x) =
∑

T∈F1(G)

∏
e ̸∈T

xe,

where F1(G) denotes the set of spanning trees of G.
Consider a “momentum” function p : V → R which satisfies the constraint

∑
v∈V p(v) = 0. Then

the second Symanzik polynomial is

φG(p;x) =
∑

F∈F2(G)

( ∑
v∈F1

p(v)
)2 ∏

e ̸∈F

xe,

where F2(G) is the set of two-component spanning forests ofG, and F1 denotes one of the components
of F . It doesn’t matter which component we label as F1, since the momemtum constraint implies
that

∑
v∈F1

p(v) = −
∑

v∈F2
p(v).

In terms of Symanzik polynomials, let ψ and φ denote the first and second Symanzik polynomials
of the quotient graph G/S. Let p be the momentum function p(v) = deg(v)− 2 for v ̸∈ S. We have

detD[S] = (−1)|S|−12|S|−2

( ∑
E(G)

αe

)
ψ(G/S)(α)− ϕ(G/S)(p;α)





8 HARRY RICHMAN, FARBOD SHOKRIEH, AND CHENXI WU

(equivalent to Theorem 1.2), or more succinctly,

detD[S]

cofD[S]
=

1

2

(∑
e∈E

αe −
φ(G/S)(p;α)

ψ(G/S)(α)

)
(equivalent to equation (6)).

3. Distance minors: Preliminaries

In this section we recall some results on the distance matrix of a tree.

3.1. Signature and invertibility. Given a distance matrix D of a tree, the submatrix D[S] has
nonzero determinant, as long as |S| ≥ 2. We give a proof in this section, based on finding the
signature of D[S] as a bilinear form. The argument in this section, particularly Proposition 3.3, was
communicated to the authors by R. Bapat, via personal communication.

We first recall a result of Cauchy, which states that the eigenvalues of M [i] “interlace” the
eigenvalues of M . Recall that M [i] denotes the matrix obtained from M by deleting the i-th row
and column.

Proposition 3.1 (Cauchy interlacing). Suppose M is a symmetric real matrix with ordered eigen-
values λ1 ≤ · · · ≤ λn, and the submatrix M [i] has ordered eigenvalues µ1 ≤ · · · ≤ µn−1. Then

λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ µn−1 ≤ λn.

Proof. See Horn–Johnson [7, Theorem 4.3.17]. □

Lemma 3.2 (Bapat [2, Lemma 8.15]). Suppose D(α) is the (weighted) distance matrix of a tree with
n vertices. Then D(α) has one positive eigenvalue and n− 1 negative eigenvalues.

Proof. See Lemma 8.15 of [2]. The proof is by induction on the number of vertices, and uses Cauchy
interlacing. □

Lemma 8.15 of [2] is stated for a non-weighted distance matrix; however, the same argument
applies to a weighted distance matrix by applying Bapat–Kirkland–Neumann’s result (3) on the
weighted distance matrix determinant [1, Corollary 2.5].

Proposition 3.3. Suppose D(α) is the weighted distance matrix of a tree G = (V,E) and S ⊂ V is
a subset of size |S| ≥ 2. Then

(a) D(α)[S] has one positive eigenvalue and |S| − 1 negative eigenvalues;
(b) detD(α)[S] ̸= 0.

Proof. (a) We apply decreasing induction on the size of S. If S = V , use Lemma 3.2. Now suppose
|S| = k where 2 ≤ k < n, and assume by induction hypothesis that the claim holds for all vertex
subsets of size greater than k. Let S+ ⊂ V be a set of k + 1 vertices containing S. The inductive
hypothesis states that D[S+] has k negative eigenvalues and one positive eigenvalue, so Cauchy
interlacing from D[S+] implies that D[S] has at least k − 1 negative eigenvalues. Since all diagonal
entries ofD[S] are zero, D[S] has zero trace. Thus the remaining eigenvalue ofD[S] must be positive,
as claimed.

(b) This follows from (a). □

3.2. Negative definite hyperplane. In this section, we prove that a distance (sub)matrix induces
a negative semidefinite quadratic form on the hyperplane of vectors whose coordinates sum to zero.
This will be used in Section 4 on quadratic optimization.

Bapat–Kirkland–Neumann [1, Theorem 2.1] proved that

(9) (D(α))−1 = −1

2
L(α) +

1

2

(∑
e∈E

αe

)−1

mm⊺
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where m is the vector with components mv = 2 − deg v. The unweighted version of (9) appeared
earlier in Graham–Lovasz [5, Lemma 1].

Proposition 3.4. Let D denote the weighted distance matrix of a tree, and L the weighted Laplacian
matrix. Then

D(α) = −1

2
D(α)L(α)D(α) +

1

2

(∑
e∈E

αe

)
11⊺.

Proof. Multiply (9) by the all-ones vector 1; since L(α)1 = 0 and m⊺1 = 2, we obtain

(D(α))−11 =
(∑

e∈E

αe

)−1

m.

Hence D(α)m =
(∑

e∈E αe

)
1. Then multiply (9) by D(α) on both sides. □

Proposition 3.5. Suppose D is the (weighted) distance matrix of a tree.

(a) If u ∈ RV is a vector whose coordinates sum to zero, then u⊺Du ≤ 0.
(b) If u ∈ RS is a vector whose coordinates sum to zero, then u⊺D[S]u ≤ 0.

Proof. (a) By assumption 1⊺u = 0. Using Proposition 3.4,

u⊺Du = −1

2
u⊺DLDu+ 0.

It is well-known that the Laplacian matrix is positive semidefinite, so u⊺DLDu = (Du)⊺L(Du) ≥ 0.
Thus u⊺Du ≤ 0 as claimed.

(b) This follows from (a) since u⊺D[S]u = ũ⊺Dũ where ũ is the extension of u by zeros. □

4. Quadratic optimization

In this section, we explain how the quantity
detD[S]

cofD[S]
arises as the solution of the following

quadratic optimization problem: for all vectors u ∈ RS ,

maximize objective function: u⊺D[S]u

with constraint: 1⊺u = 1.

The statement is proved as Proposition 4.1.

Proposition 4.1. If D[S] is a principal submatrix of a distance matrix indexed by S, then

detD[S]

cofD[S]
= max{u⊺D[S]u : u ∈ RS , 1⊺u = 1}

where cofD[S] denotes the sum of cofactors of D[S].

Proof. If |S| = 1 then D[S] is the zero matrix and the statement is true trivially.
Now assume |S| ≥ 2. Proposition 3.5 implies that the objective function u 7→ u⊺D[S]u is concave

on the domain 1⊺u = 1, so any critical point is a local maximum. The gradient of the objective
function is 2D[S]u, and the gradient of the constraint is 1. By the theory of Lagrange multipliers,
the optimal solution u∗ is a vector satisfying

D[S]u∗ = λ1 for some λ ∈ R.
The constant λ is in fact the optimal objective value, since

(u∗)⊺D[S]u∗ = (D[S]u∗)⊺u∗ = λ(1⊺u∗) = λ.

Here we use the fact that D[S] is symmetric, and the given constraint 1⊺u = 1.
On the other hand, since D[S] is invertible (Proposition 3.3) we have u∗ = λ(D[S]−11), so that

1 = 1⊺u∗ = λ(1⊺D[S]−11) = λ
cofD[S]

detD[S]
.
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Thus the optimal objective value is λ =
detD[S]

cofD[S]
. □

Remark 4.2. If we consider G as a network of wires with each edge e containing a resistor of
resistance αe, then the optimal vector u∗ has a physical interpretation as current flow: it records
the currents exiting at s ∈ S when current enters the network in the amount 1

2 (deg(v)− 2) for each
v ∈ V , and the network is grounded at all nodes in S.

We give an explicit combinatorial expression for u∗, up to a normalizing constant, in Definition 5.2.
It is a classical result in network theory that this gives the current flow; see Tutte [10, Section VI.6].

4.1. Cofactor sums. Next we recall a connection between minors of the Laplacian matrix and co-
factor sums of the distance matrix, when G is a tree. The result is due to Bapat–Sivasubramanian [3].

Recall that cofM denotes the sum of cofactors of M , i.e. cofM =

n∑
i=1

n∑
j=1

(−1)i+j detM [i, j] where

M [i, j] denotes the matrix with the i-th row and j-th column deleted.

Theorem 4.3 (Distance submatrix cofactor sums). Given a tree G = (V,E) with edge weights, let
D(α) be the weighted distance matrix of G. Let S ⊂ V be a nonempty subset of vertices. Then

cofD(α)[S] = (−2)|S|−1
∑

T∈F1(G;S)

w(T ).

Proof. Bapat and Sivasubramanian [3, Theorem 11] show that

cofD(α)[S] = (−2)|S|−1

(∏
e∈E

αe

)
detL(α)[S]

where L(α) is the weighted Laplacian matrix. Then combine this equation with the matrix tree
theorem, Theorem 2.2 (b). □

The following result is a direct consequence of theorems of Bapat–Kirkland–Neumann [1] and
Bapat–Sivasubramanian [3].

Proposition 4.4. Suppose D(α) is the distance matrix of a weighted tree with edge weights {αe :
e ∈ E}. Then

detD(α)

cofD(α)
=

1

2

∑
e∈E

αe.

Proof. Consider applying Theorem 4.3 with S = V . In this case F1(G;V ) consists of the forest with
no edges, and for this forest w(T ) is the product of all edge weights. Thus

cofD(α) = (−2)n−1
∏
e∈E

αe.

Combining this with the Bapat–Kirkland–Neuman formula (3) yields the result. □

4.2. Monotonicity. As a consequence of Proposition 4.1, we show that the ratio
detD[S]

cofD[S]
behaves

monotonically in S, and deduce further bounds on
detD[S]

cofD[S]
.

We first note the following restatement of Proposition 4.1, viewing RS as a subspace of RV where
coordinates indexed by V \ S are set to zero.

Corollary 4.5. If D[S] is a principal submatrix of a distance matrix indexed by S, then

detD[S]

cofD[S]
= max{u⊺Du : u ∈ RV , 1⊺u = 1, uv = 0 if v ̸∈ S}

where cofD[S] denotes the sum of cofactors of D[S].
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Proof of Theorem 1.4. We are to show that for vertex subsets A ⊂ B, we have
detD[A]

cofD[A]
≤ detD[B]

cofD[B]
.

By Corollary 4.5, both values
detD[A]

cofD[A]
and

detD[B]

cofD[B]
arise from optimizing the same objective

function on an affine subspace of RV , but the subspace for A is contained in the subspace for B. □

Proof of 1.5. (a) Recall that conv(S,G) denotes the subgraph of G which is the union of all paths
between vertices in S. To see that

detD[S]

cofD[S]
≤ 1

2

∑
E(conv(S,G))

αe,

take B as the set of all vertices in conv(S,G). Then S ⊂ B, and apply Theorem 1.4. By Proposi-
tion 4.4 we have

detD[B]

cofD[B]
=

1

2

∑
E(conv(S,G))

αe.

(b) Recall that γ is a simple path between vertices s0, s1 ∈ S. To see that

1

2

∑
e∈γ

αe ≤
detD[S]

cofD[S]
,

take A as the set of endpoints of {s0, s1}. Then A ⊂ S by assumption, and apply Theorem 1.4. By
Proposition 4.4 we have

detD[A]

cofD[A]
=

1

2
d(s0, s1) =

1

2

∑
e∈γ

αe. □

5. Distance minors: Proofs

In this section we prove our main result, Theorem 1.2. Theorem 1.1 follows as an immediate
corollary.

5.1. Outline of proof. In Section 4, we showed that
detD[S]

cofD[S]
is the maximum value of the function

u 7→ u⊺D[S]u on an affine hyperplane of RS , and that the maximum is achieved when D[S]u∗ = λ1.
We can thus compute detD[S] via the following steps.

(i) Find a vector m ∈ RS such that D[S]m = λ1 ∈ RS .

(ii) Compute the sum of entries of m, i.e. 1⊺m, and normalize u∗ =
m

1⊺m
. This solves the

optimization problem of Section 4.

(iii) Find the optimal objective value λ∗ =
λ

1⊺m
.

(iv) Use the expression for cofD[S] in Theorem 4.3 to compute detD[S] = λ∗(cofD[S]).

Example 5.1. Suppose G is the tree with unit edge weights shown below.

v2 v3

v1

If S is the set of leaf vertices, the distance submatrix is D[S] =

0 3 4
3 0 5
4 5 0

 . Following the steps

outlined above:

(i) The vector m =

5
8
9

 satsifies D[S]m = λ1 for λ = 60.

(ii) The sum of entries of m is 1⊺m = 22.
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(iii) We have λ∗ =
λ

1⊺m
=

30

11
.

(iv) The cofactor sum is cofD[S] = 44, so det[S] = λ∗(cofD[S]) = 120.

It turns out that the entries of m are combinatorially meaningful (see Definition 5.2), which also
gives combinatorial meaning to the constant λ.

5.2. General case. Fix a tree G = (V,E) with edge weights {αe : e ∈ E} and a nonempty subset
S ⊂ V . We first define a vector m which satisfies the relation D[S]m = λ1 for some λ.

Definition 5.2. Let m = m(G;S) denote the vector in RS be defined by

(10) mv =
∑

T∈F1(G;S)

w(T )(2− dego(T, v)) for each v ∈ S.

where w(T ) is the co-weight of T (see Section 2.4) and dego(T, v) is the outdegree of the v-component
of T (see Section 2.4, equation (8)).

Let 1 denote the all-ones vector.

Proposition 5.3. Suppose S is nonempty. For the vector m = m(G;S) defined above,

(a) 1⊺m = 2
∑

T∈F1(G;S)

w(T );

(b) if all edge weights αe are positive, m is nonzero.

Proof. (a) By Lemma 2.4 we can express dego(T, s) as a sum over vertices in T (s),

ms =
∑

T∈F1(G;S)

w(T )(2− dego(T, s)) =
∑

T∈F1(G;S)

w(T )

 ∑
v∈T (s)

(2− deg(v))

 .

Then exchange the order of summation in 1⊺m,

1⊺m =
∑
s∈S

ms =
∑
s∈S

 ∑
T∈F1(G;S)

w(T )
∑

v∈T (s)

(2− deg(v))


=

∑
T∈F1(G;S)

w(T )

∑
s∈S

∑
v∈T (s)

(2− deg(v))

 .

Observe that the inner double sum is simply a sum over v ∈ V , since the vertex sets of T (s) for
s ∈ S form a partition of V by definition of S-rooted spanning forest. Thus

1⊺m =
∑
T∈F1

w(T )

(∑
v∈V

(2− deg(v))

)
=
∑
T∈F1

w(T ) · 2

where we apply equation (7) for the last equality.
(b) If all edge weights are positive, then w(T ) > 0 for all T , and F1(G;S) is nonempty as long as

S is nonempty. Thus part (a) implies that 1⊺m > 0. □

Corollary 5.4. If G is a graph with unit edge weights αe = 1, then the vector m defined in (10)
satisfies 1⊺m = 2κ(G;S).

Theorem 5.5. With m = m(G;S) defined as in (10), D[S]m = λ1 for the constant

λ =
∑
E(G)

αe

∑
F1(G;S)

w(T )−
∑

F2(G;S)

w(F ) (2− dego(F, ∗))2.
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Proof. For e ∈ E and v, w ∈ V , let δ(e; v, w) denote the function defined in Section 2.3. For any
v ∈ S, we have

(D[S]m)v =
∑
s∈S

d(v, s)ms

=
∑
s∈S

 ∑
e∈E(G)

αe δ(e; v, s)

 ∑
T∈F1(G;S)

(2− dego(T, s))w(T )


=
∑
T∈F1

w(T )
∑
e∈E

αe

(∑
s∈S

δ(e; v, s)(2− dego(T, s))

)

=
∑
T∈F1

w(T )
∑
e∈E

αe

∑
s∈S

δ(e; v, s)
∑

u∈T (s)

(2− deg(u))

 .(11)

where in the last equality, we apply Lemma 2.4 to the subgraph H = T (s).
We introduce additional notation to handle the double sum in parentheses in (11). Each S-rooted

spanning tree T naturally induces a surjection πT : V → S, defined by

πT (u) = s if and only if u ∈ T (s).

Using this notation,

(12) (D[S]m)v =
∑
T∈F1

w(T )
∑
e∈E

αe

(∑
u∈V

(2− deg(u))δ(e; v, πT (u))

)

We will compare the above expression with the one obtained after replacing δ(e; v, πT (u)) with

δ(e; v, u). From Lemma 2.4 (b), we have
∑
u∈V

(2− deg(u))δ(e; v, u) = 1. Thus

(13)
∑
T∈F1

w(T )
∑
e∈E

αe =
∑
T∈F1

w(T )
∑
e∈E

αe

(∑
u∈V

(2− deg(u))δ(e; v, u)

)

By subtracting equation (13) from (12), we obtain

(D[S]m)v −
∑
T∈F1

w(T )
∑
e∈E

αe =
∑
T∈F1

w(T )
∑
e∈E

αe

∑
u∈V

(2− deg(u))
(
δ(e; v, πT (u))− δ(e; v, u)

)
.

When e ∈ E and v ∈ V are fixed, u 7→ δ(e; v, u) is the indicator function of one component of the
principal cut G \ e. We have

(14) δ(e; v, πT (u))− δ(e; v, u) =


0 if δ(e;πT (u), u) = 0

1 if δ(e;πT (u), u) = 1 and δ(e; v, πT (u)) = 1

−1 if δ(e;πT (u), u) = 1 and δ(e; v, πT (u)) = 0.

Now consider varying u over all vertices, when e, T , and v are fixed. We have the following three
cases:

Case 1: if e ̸∈ T , then u and πT (u) are on the same side of the principal cut G\e, for every vertex
u. In this case δ(e; v, πT (·))− δ(e; v, ·) = 0.

Case 2: if e ∈ T and πT (e) is separated from v by e, then δ(e; v, πT (·))− δ(e; v, ·) is the indicator
function for the floating component of T \ e. See Figure 4, left.

Case 3: if e ∈ T and πT (e) is on the same component as v from e, then δ(e; v, πT (·)) − δ(e; v, ·)
is the negative of the indicator function for the floating component of T \ e. See Figure 4, right.
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e

v
πT (e)

e

v

πT (e)

Figure 4. Edge e ∈ T with δ(e; v, πT (e)) = 1 (left) and δ(e; v, πT (e)) = 0 (right).
The floating component of T \ e is highlighted.

Thus when multiplying the term (14) by (2− deg(u)) and summing over all vertices u, we obtain

∑
u∈V

(2−deg(u))
(
δ(e; v, πT (u))−δ(e; v, u)

)
=


0 if e ̸∈ T,

2− dego(T \ e, ∗) if e ∈ T (s0) and δ(e; v, s0) = 1,

−(2− dego(T \ e, ∗)) if e ∈ T (s0) and δ(e; v, s0) = 0.

Thus

(D[S]m)v −
∑
T∈F1

w(T )
∑
e∈E

αe

=
∑
T∈F1

w(T )
∑
e∈T

αe(2− dego(T \ e, ∗))
(
1(δ(e; v, πT (e)) = 1)− 1(δ(e; v, πT (e)) = 0)

)
.(15)

We now rewrite the above expression in terms of F2(G;S). For the rest of the argument, let

(⋆) = (D[S]m)v −
∑
T∈F1

w(T )
∑
e∈E

αe.

Observe in (15) that the deletion T \ e is an (S, ∗)-rooted spanning forest of G, and that the
corresponding weights satisfy

w(F ) = αe · w(T ) if F = T \ e.

Note that F = T \ e is equivalent to T = F ∪ e, and in particular this only occurs when we choose
the edge e to be in the floating boundary ∂F (∗).

Thus

(⋆) =
∑
F∈F2

w(F )(2− dego(F, ∗))
∑
e∈∂F

(
1(δ(e; v, π(F∪e)(e)) = 1)− 1(δ(e; v, π(F∪e)(e)) = 0)

)
=
∑
F∈F2

w(F )(2− dego(F, ∗))

(
#{e ∈ ∂F : δ(e; v, πT (e)) = 1 for T = F ∪ e}

−#{e ∈ ∂F : δ(e; v, πT (e)) = 0 for T = F ∪ e}

)
.

Now for any e ̸∈ F , let δ(e; v, F (∗)) = δ(e; v, x) for any x ∈ F (∗), i.e.

δ(e; v, F (∗)) =

{
1 if e lies on path from v to F (∗),
0 otherwise.
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The condition that δ(e; v, π(F∪e)(e)) = 1 (respectively δ(e; v, π(F∪e)(e)) = 0) is equivalent to δ(e; v, F (∗)) = 0
(respectively δ(e; v, F (∗)) = 1). For an illustration, compare Figures 5 and 6. Thus

(⋆) =
∑
F∈F2

w(F )(2− dego(F, ∗))

(
#{e ∈ ∂F (∗) : δ(e; v, F (∗)) = 0}

−#{e ∈ ∂F (∗) : δ(e; v, F (∗)) = 1}

)
.

Finally, we observe that for any forest F in F2(G;S), there is exactly one edge e in the boundary
∂F (∗) of the floating component which satisfies δ(e; v, F (∗)) = 1, namely the unique boundary edge
on the path from the floating component F (∗) to v. Hence

#{e ∈ ∂F (∗) : δ(e; v, F (∗)) = 1} = 1, and

#{e ∈ ∂F (∗) : δ(e; v, F (∗)) = 0} = dego(F, ∗)− 1.

Thus the previous expression (⋆) simplifies as

(⋆) =
∑
F∈F2

w(F )(2− dego(F, ∗))
(
(dego(F, ∗)− 1)− (1)

)
= −

∑
F∈F2

w(F )(2− dego(F, ∗))2.

as desired. □

e

v
F (∗)

e

v
F (∗)

Figure 5. Edge e ∈ ∂F (∗) with δ(e; v, F (∗)) = 0 (left) and δ(e; v, F (∗)) = 1 (right).
The floating component F (∗) is highlighted.

e

v

e

v

Figure 6. Edges e ∈ ∂F (∗) with δ(e; v, π(F∪e)(e)) = 1 (left) and
δ(e; v, π(F∪e)(e)) = 0 (right).

Finally we can prove our main theorem: for any nonempty subset S ⊂ V (G),

(16) detD[S] = (−1)|S|−12|S|−2

∑
E(G)

αe

∑
F1(G;S)

w(T )−
∑

F2(G;S)

w(F )(dego(F, ∗)− 2)2

 .

Proof of Theorem 1.2. First, suppose |S| = 1. Then D[S] is the zero matrix, and we must show that
the right-hand side is zero. Since G is a tree, F1(G; {v}) consists of the tree G itself, with co-weight
w(G) = 1. Moreover, the subgraphs in F2(G; {v}) are precisely the tree splits G \ e, and for each
F = G \ e we have w(F ) = αe and dego(F, ∗)− 2 = −1. This shows that the right-hand size of (16)
is zero.

Next, suppose |S| ≥ 2. Proposition 3.3 states that D[S] is nonsingular, so we may use the inverse
matrix identity

(17) 1⊺D[S]−11 =
cofD[S]

detD[S]
.
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Let m = m(G;S) denote the vector (10). By Proposition 5.3 (a) and Theorem 4.3,

1⊺m = 2
∑

T∈F1(G;S)

w(T ) =
cofD[S]

(−1)1−|S|22−|S| .

Theorem 5.5 states that D[S]m = λ1 for some constant λ, which is nonzero since D[S] is invertible
and m is nonzero, c.f. Proposition 5.3 (b). Hence

(18) 1⊺D[S]−11 = λ−11⊺m =
cofD[S]

(−1)|S|−12|S|−1λ
.

Comparing (17) with (18) gives the desired result, detD[S] = (−1)|S|−12|S|−1λ. □

Proof of Theorem 1.1. Set all weights αe to 1 in Theorem 1.2. In this case, the weights w(T ) = 1
and w(F ) = 2 for all forests T and F , and∑

e∈E

αe = n− 1,
∑

T∈F1(G;S)

w(T ) = κ1(G;S). □

Remark 5.6. It is worth observing that depending on the chosen subset S ⊂ V , the distances
appearing in the submatrix D[S] may ignore a large part of the ambient tree G. We could instead
replace G by the subtree conv(S,G) consisting of the union of all paths between vertices in S, which
we call the convex hull of S ⊂ G. To apply formula (2) or (4) “efficiently,” we should replace G
on the right-hand side with the subtree conv(S,G). However, the formulas as stated are true even
without this replacement due to cancellation of terms.

6. Examples

Example 6.1. Suppose G is a tree consisting of three edges joined at a central vertex.

a

b

c
u

v

w

First, suppose S = V . The corresponding distance matrix is

D[V ] =


0 a b c
a 0 a+ b a+ c
b a+ b 0 b+ c
c a+ c b+ c 0

 ,

which has determinant detD[S] = −4(a+ b+ c)abc.
Next, suppose S consists of the leaf vertices {u, v, w}. Then

D[S] =

 0 a+ b a+ c
a+ b 0 b+ c
a+ c b+ c 0


which has determinant detD[S] = 2(a+ b)(a+ c)(b+ c) = 2

(
(a+ b+ c)(ab+ ac+ bc)− abc

)
. The

“special vector” that satisfies D[S]m = λ1 in this example is m =

ab+ ac
ab+ bc
ac+ bc

 .
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Example 6.2. Suppose G is the tree with unit edge weights shown below, with five leaf vertices.

1

2
3

4

5

Let S denote the set of five leaf vertices. Then

D[S] =


0 2 3 3 3
2 0 3 3 3
3 3 0 2 2
3 3 2 0 2
3 3 2 2 0

 .

There are 11 forests in F1(G;S):

There are 6 forests in F2(G;S):

The determinant of the distance submatrix is

detD[S] = 368 = (−1)423
(
6 · 11− (3 · 12 + 2 · 22 + 1 · 32)

)
,

and the special vector is m =


5
5
4
4
4

 .

Example 6.3. Suppose G is the tree with edge weights shown in Figure 7, with four leaf vertices
and two internal vertices. Let S denote the set of four leaf vertices. Then

D[S] =


0 a+ b a+ c+ d a+ c+ e

a+ b 0 b+ c+ d b+ c+ e
a+ c+ d b+ c+ d 0 d+ e
a+ c+ e b+ c+ e d+ e 0



and m =


abd +abe +acd +ace +ade −bde
abd +abe −ade +bcd +bce +bde
abd −abe +acd +ade +bcd +bde
−abd +abe +ace +ade +bce +bde


The determinant of the distance submatrix is

detD[S] = (−1)322
(
(a+ b+ c+ d+ e) · (abd+ abe+ acd+ ace+ ade+ bcd+ bce+ bde)

−(12(abcd+ abce+ acde+ bcde) + 22(abde))
)
.
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a

b

c
d

e

1

2

3

4

Figure 7. Tree with four leaves, and varying edge weights.
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