
PRINCIPAL MINORS OF TREE DISTANCE MATRICES

HARRY RICHMAN, FARBOD SHOKRIEH, AND CHENXI WU

Abstract. We prove that the principal minors of the distance matrix of a tree
satisfy a combinatorial expression involving counts of rooted spanning forests of
the underlying tree. This generalizes a result of Graham and Pollak. We also
give such an expression for the case of trees with edge lengths. We use arguments
motivated by potential theory on graphs. Our formulas can be expressed in
terms of evaluations of Symanzik polynomials.
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1. Introduction

Suppose G = (V,E) is a tree with n vertices. Let D denote the distance matrix
of G, defined by setting the (u, v)-entry to the length of the unique path from u
to v. In [GP71], Graham and Pollak prove

(1) detD = (−1)n−12n−2(n− 1).

This identity is remarkable in that the result does not depend on the tree structure,
beyond the number of vertices. The identity (1) was motivated by a problem in
data communication, and inspired much further research on distance matrices.

The main result of this paper is to generalize (1) by replacing detD with any of
its principal minors. For a subset S ⊆ V , let D[S] denote the submatrix consisting
of the S-indexed rows and columns of D.
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Theorem A. Suppose G is a tree with n vertices whose distance matrix is D. Let
S ⊆ V be a nonempty subset of vertices. Then

detD[S] = (−1)|S|−12|S|−2
(

(n− 1)κ(G;S) −
∑

F ∈F2(G;S)
(outdeg(F, ∗) − 2)2

)
,

where κ(G;S) is the number of S-rooted spanning forests of G, F2(G;S) is the set
of (S, ∗)-rooted spanning forests of G, and outdeg(F, ∗) denotes the outdegree of
the floating component of F .

For definitions of rooted spanning forests as well as other terminology, see §2.
When S = V is the full vertex set, the set of V -rooted spanning forests is a
singleton (consisting of the subgraph with no edges) so κ(G;V ) = 1. Moreover, the
set F2(G;V ) of (V, ∗)-rooted spanning forests is empty. Thus Theorem A recovers
the Graham–Pollak identity (1).

1.1. Trees with edge lengths. Assume the tree G is endowed with a collection
of positive real edge lengths α = {αe : e ∈ E}. The distance matrix (with respect
to α), which we will again denote by D, is defined by setting the (u, v)-entry to
the sum of the edge lengths αe along the unique path from u to v. The relation
(1) has a generalization for the distance matrix of a tree with edge lengths, proved
by Bapat, Kirkland, and Neumann ([BKN05, Corollary 2.5]):

(2) detD = (−1)n−12n−2
(∑

e∈E

αe

)( ∏
e∈E

αe

)
.

We, in fact, prove the following more general result. For an edge subset A ⊆ E let
w(A) = ∏

e̸∈A αe. (The quantity w(A) is sometimes known as the “weight” of A,
while other sources call it the “coweight.”)

Theorem B. Suppose G = (V,E) is a finite tree with edge lengths {αe : e ∈ E},
and corresponding distance matrix D. For any nonempty subset S ⊆ V , we have
(3)

detD[S] = (−1)|S|−12|S|−2

∑
e∈E

αe

∑
T ∈F1(G;S)

w(T )−
∑

F ∈F2(G;S)
w(F ) (outdeg(F, ∗)−2)2

,
where F1(G;S) is the set of S-rooted spanning forests of G, F2(G;S) is the set
of (S, ∗)-rooted spanning forests of G, w(T ) and w(F ) denote the weights of the
forests T and F , and outdeg(F, ∗) is the outdegree of the floating component of F ,
as above.

See §2 for explanations of the other terminology used here.

Example. Suppose G is the tree with unit edge lengths shown in Figure 1, with
five leaf vertices and three internal vertices. Let S = {1, 2, 3, 4, 5} be the set of
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leaf vertices. The corresponding distance submatrix is

D[S] =


0 2 3 4 4
2 0 3 4 4
3 3 0 3 3
4 4 3 0 2
4 4 3 2 0

 ,

whose determinant is 864.

1

2 3 4

5

Figure 1. Tree with five leaves.

The tree G has 7 edges and 21 S-rooted spanning forests. There are 19 (S, ∗)-
rooted spanning forests. Of the floating components in these forests, 14 have
outdegree three, 4 have outdegree four, and 1 has outdegree five. By Theorem A,

detD[S] = (−1)4 23
(
7 · 21 − (14 · 12 + 4 · 22 + 1 · 32)

)
= 864.

1.2. Normalized principal minors. One may ask how the expressions detD[S]
vary, as we fix a tree distance matrix and vary the vertex subset S. To our
knowledge there is no nice behavior among these determinants but, as S varies
there is nice behavior of a “normalized” version which we describe here.

Given a matrix A, let cof A denote the sum of cofactors of A, i.e.

cof A =
|S|∑
i=1

|S|∑
j=1

(−1)i+j detAi,j

where Ai,j is the submatrix of A that removes the i-th row and the j-th column. If
A is invertible, then cof A is the sum of entries of the matrix inverse A−1 multiplied
by a factor of detA, i.e. cof A = (detA)(1⊺A−11).

In [BS11], Bapat and Sivasubramanian show the following identity for the sum
of cofactors of a distance submatrix D[S] of a tree with edge lengths {αe : e ∈ E},

(4) cof D[S] = (−2)|S|−1 ∑
T ∈F1(G;S)

w(T ),

where F1(G;S) denotes the set of S-rooted spanning forests of G (see §2 and
Theorem 4.4). An immediate consequence of Theorem B, together with (4), is the
identity

(5) detD[S]
cof D[S] = 1

2

(∑
e∈E

αe −
∑

F ∈F2(G;S) w(F ) (outdeg(F, ∗) − 2)2∑
T ∈F1(G;S) w(T )

)
.
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We will refer to detD[S]/cof D[S] as the normalized principal minor correspond-
ing to the vertex subset S. It turns out that normalized principal minors satisfy a
monotonicity condition.

Theorem C (Monotonicity of normalized principal minors). If A,B ⊆ V are
nonempty vertex subsets with A ⊆ B, then

detD[A]
cof D[A] ≤ detD[B]

cof D[B] .

The essential observation behind this result is an intriguing connection to the
theory of quadratic optimization; we will show that the normalized principal minor
detD[S]/ cof D[S] is the solution of the following optimization problem: for all
vectors u ∈ RS,

maximize objective function: u⊺D[S]u
with constraint: 1⊺u = 1.

This result is obtained using the method of Lagrange multipliers, and relies on
knowledge of the signature of D[S]. The proof is given in §4.

For a nonempty subset S, equation (5) implies the upper bound in

0 ≤ detD[S]
cof D[S] ≤ 1

2
∑

e∈E(G)
αe,

while the lower bound is implied by the quadratic optimization formulation. We
get refined bounds by making use of the monotonicity property, Theorem C. Let
conv(S,G) denote the convex hull of S, i.e. the subtree of G consisting of all paths
between points of S.

Theorem D (Bounds on principal minor ratios). Suppose G = (V,E) is a finite
tree with edge lengths {αe : e ∈ E} and with distance matrix D.

(a) For a nonempty subset S ⊆ V ,
detD[S]
cof D[S] ≤ 1

2
∑

e∈E(conv(S,G))
αe.

(b) If γ is a simple path between vertices s0, s1 ∈ S, then
1
2
∑
e∈γ

αe ≤ detD[S]
cof D[S] .

The monotonicity result, Theorem C, was found independently by Devriendt [Dev22,
Property 3.38], in the more general context of effective resistance matrices of graphs.

Remark. It is worth observing that the terms appearing in the submatrix D[S]
only depend on the lengths of edges which lie on some path between vertices in
S. Depending on the chosen subset S ⊆ V , these distances in D[S] may ignore a
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large part of the ambient tree G. However, the expression in Theorem B involes
all edge lengths.

To calculate detD[S] in this case, using Theorem B “efficiently,” we could
instead replace G by the subtree conv(S,G) consisting of the union of all paths
between vertices in S, which we call the convex hull of S. However, the formulas
as stated are true even without this replacement due to cancellation of terms.

1.3. Connection with Symanzik polynomials. Recall, given a graph G =
(V,E), the first Symanzik polynomial is the homogeneous polynomial in edge-
indexed variables x = {xe : e ∈ E} defined by

ψG(x) =
∑

T ∈F1(G)

∏
e̸∈T

xe,

where F1(G) denotes the set of spanning trees of G.
A “momentum function” is any p : V → R satisfying the constraint ∑v∈V p(v) =

0. The second Symanzik polynomial is

φG(p;x) =
∑

F ∈F2(G)

( ∑
v∈F1

p(v)
)2 ∏

e̸∈F

xe,

where F2(G) is the set of two-component spanning forests of G and F1 denotes one
of the components of F = F1∪F2. Note that it does not matter which component we
label as F1, since the momentum constraint implies that ∑v∈F1 p(v) = −∑

v∈F2 p(v).
We note that the expressions in Theorem B and (5) are closely related to

Symanzik polynomials. Let ψ(G/S) and φ(G/S) denote the first and second Symanzik
polynomials of the quotient graph G/S. Let pcan be the momentum function defined
on G/S by pcan(v) = deg(v) − 2 for v ̸∈ S and pcan(vS) = −∑

v ̸∈S pcan(v), where
vS denotes the vertex image of S in the quotient.

The identity in Theorem B can be written as follows

detD[S] = (−1)|S|−12|S|−2
((∑

e∈E

αe

)
ψ(G/S)(α) − ϕ(G/S)(pcan;α)

)
.

The “normalized” ratio (5) can be written using Symanzik polynomials as

(6) detD[S]
cof D[S] = 1

2

(∑
e∈E

αe −
φ(G/S)(pcan;α)
ψ(G/S)(α)

)
.

1.4. Related work. The idea to study the ratio (detD/cof D) appeared early
on in the literature on distance matrices. In [GHH77], it is shown that this ratio
is additive on wedge sums of graphs. This powerful observation is enough to
essentially obtain the Graham–Pollak identity (1) and its weighted version (2) as
corollaries.

Choudhury and Khare [CK24] prove a generalization of the Graham–Pollak
identity (1) in which D can be replaced with certain principal minors, but crucially
their generalization excludes all cases where detD[S] depends on the underlying
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tree structure. Namely, they consider precisely those minors detD[S] which can be
expressed in terms of data assigned to edges (weights, edge counts, etc.), without
any reference to what edges are incident to others. In contrast, Theorems A and
B make evident use of the tree structure, via the spanning forests in F1(G;S) and
F2(G;S).

It is natural to ask how our results for trees may be generalized to arbitrary
finite graphs. We address this in an upcoming paper [RSW24], which involves
more technical machinery. Certain ideas in this paper overlap with those developed
concurrently and independently in [Dev22]. Some generalizations of our results,
namely Theorem C, appear already in [Dev22, Property 3.38], which is concerned
with effective resistances on graphs. On a tree, effective resistance is the same as
(path-)distance. If D is the distance matrix of a tree, then any principal minor
D[S] is the effective resistance matrix of some (edge-weighted) graph on the vertex
set S. The quantity (detD[S]/ cof D[S]) is referred to as the resistance radius
of S (up to a factor of 2), and the vector m used in §5 is called the resistance
curvature (up to scaling) in Devriendt’s terminology. The idea to consider an m-like
vector as a “curvature” also appears in [Ste23], which motivates the terminology by
proving graph-theoretic analogues of some curvature-related theorems in differential
geometry. The results in §3 regarding the signature of the matrices D[S] can be
considered special discrete cases of the Dirichlet pairing defined by Baker and
Rumely [BR07].

Amini studies ratios of Symanzik polynomials in [Ami19], similar to the ratio
appearing in (6), motivated by quantum field theory and the calculation of Feynman
amplitudes [ABBGF16]. Amini’s results apply for Symanzik polynomials on an
arbitrary graph, in contrast to (6) where the revelant graph is a vertex-quotient of a
tree. The first Symanzik polynomial can be computed using Kirchhoff’s celebrated
matrix-tree theorem. The second Symanzik polynomial can similarly be calculated
via determinant of the generalized Laplacian matrix; see [Ami19, Section 1.1] and
[Bro24, Theorem 7.1].

In [GL24], Gutiérrez and Lillo observe that Theorem A can be expressed as

detD[S] = (−1)|S|−12|S|−2
(

(|S| − 1)κ(G;S)

−
∑

F ∈F2(G;S)
(outdeg(F, ∗) − 1) (outdeg(F, ∗) − 4)

)

through some straightforward algebraic manipulation, while also providing a new
proof for this result using a nice combinatorial argument involving sign-reversing
involutions on collections of paths in G.

The results in this paper may be of interest to those studying phylogenetics.
In phylogenetics, one aims to find the tree that best represents the evolutionary
history among a collection of organisms using biological data (e.g. DNA sequences).
In this tree, leaf vertices represent modern-day species, while internal vertices
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represent ancestral species. There are standard methods for estimating pairwise
distances between species along their evolutionary tree. This means we can often
predict the distance submatrix D[S] of the target tree, in which S is the set of
leaf vertices, and we would like to use this information in reverse to decide what
underlying tree best fits this distance data. Results such as Theorem C may lead to
new tests for phylogenetic inference, or for evaluating tree instability [CBSMI24].

Structure of the paper. In §2 we review terminology and notation concerning
graphs, spanning forests, Laplacian matrices, and degree-related identities. In
§3 we recall some results on the spectral properties of the distance matrix and
its principal submatrices. In §4 we show that the normalized principal minor
(detD[S]/ cof D[S]) is the solution to some quadratic optimization problem in-
volving the bilinear form D[S]. This observaton is used to prove Theorem C
(monotonicity) and Theorem D. In §5 we prove Theorems A and B, which give a
combinatorial expression for detD[S] in terms of rooted spanning forests. We end
the paper with some examples in §6 demonstrating Theorems A and B.

Acknowledgements. The authors would like to thank Ravindra Bapat for helpful
correspondence, in particular related to the results in § 3.1. We also thank Matt
Baker, Karel Devriendt, Apoorva Khare, and Sebastian Prillo for helpful discussions.
We thank Álvaro Gutiérrez for helpful discussions regarding his follow-up to our
work.

HR was supported by the Howard Hughes Medical Institute and the Matsen
Group at the Fred Hutchinson Cancer Center. FS was partially supported by
NSF CAREER DMS-2044564 grant. CW was partially supported by Simons
Collaboration Grant 850685.

2. Graphs and spanning forests

Throughout, let G = (V,E) be a finite graph with (positive, real) edge lengths
{αe : e ∈ E}. A graph without edge lengths will be considered as a special case,
with αe = 1 for all e ∈ E.

We assume all graphs in the paper are equipped with an implicit (arbitrary)
orientation. This means we fix a pair of functions head: E → V and tail : E → V ,
such that head(e) and tail(e) are the endpoints of e. We abbreviate head(e) as e+,
and tail(e) as e−.

2.1. Spanning trees and forests. A spanning tree of a graph G is a subgraph
which is connected, has no cycles, and contains all vertices of G. A spanning forest
of a graph G is a subgraph which has no cycles and contains all vertices of G.

Given a set of vertices S = {v1, v2, . . . , vr}, an S-rooted spanning forest of G is
a spanning forest which has exactly one vertex of S in each connected component.
Given s ∈ S and a forest F , we let F (s) denote the s-component of F , that is, the
component of F containing s.
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An (S, ∗)-rooted spanning forest of G is a spanning forest which has |S| + 1
components, where |S| components each contain one vertex of S, and the additional
component is disjoint from S. We call the component disjoint from S the floating
component, following terminology in [KKW15]. For an (S, ∗)-rooted spanning
forest F , we let F (∗) denote the floating component. We sometimes refer to the
floating component as the ∗-component of F . Again, for s ∈ S, we let F (s) denote
the s-component of F .

Let F1(G;S) denote the set of S-rooted spanning forests of G, and let F2(G;S)
denote the set of (S, ∗)-rooted spanning forests of G.

Example 2.1. Suppose G is the tree with unit edge lengths shown below.

v2 v3

v1

Let S be the set of three leaf vertices. Then F1(G;S) contains 11 forests, while
F2(G;S) contains 19 forests. Some of these are shown in Figure 2 and Figure 3,
respectively.

Figure 2. Some forests in F1(G;S).

Figure 3. Some forests in F2(G;S), with floating component highlighted.

Remark 2.2. Let q be a fixed vertex. Then F1(G; {q}) is the set of spanning trees
of G, and F2(G; {q}) is the set of two-component spanning forests of G. Note that
both these sets are independent of the choice of the vertex q, and were denoted by
F1(G) and F2(G), respectively, in §1.3.

2.2. Laplacian matrix. The incidence matrix of a graph G = (V,E) (endowed
with an arbitrary orientation) is the matrix B ∈ RV ×E defined by

Bv,e = 1(v = e+) − 1(v = e−).
Here 1(·) denotes the indicator function.

Let {αe : e ∈ E} denote the edge lengths as before. The Laplacian matrix is
defined by

(7) L = B


α−1

1
. . .

α−1
m

B⊺.
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It is clear that L is positive semidefinite, since edge lengths are positive.
Note that the incidence matrix depends on the choice of the orientation but the

Laplacian matrix does not.

2.3. Principal minors matrix-tree theorem. For a subset A ⊆ E we define
w(A) as

w(A) =
∏
e ̸∈A

αe.

If H is a subgraph of G, we use H to also denote its subset of edges E(H). So, in
symbols, w(H) = w (E(H)).

Let
κ(G;S) =

∑
T ∈F1(G;S)

w(T ).

When all edge lengths are one, κ(G;S) is the number of S-rooted spanning forests.

Remark 2.3. If G is a graph without edge lengths (so αe = 1 for all e ∈ E),
then κ(G;S) is simply the number of S-rooted spanning forests of G. In this case,
κ(G;S) is also the number of spanning trees of the quotient graph G/S, which
“glues together” all vertices in S as a single vertex vS.

The (principal minors) matrix-tree theorem gives a determinantal formula for
computing κ(G;S), which we now explain. Given S ⊆ V , let L[S] denote the
matrix obtained from L by removing the rows and columns indexed by S.

Theorem 2.4. Let G = (V,E) be a finite graph with edge lengths {αe : e ∈ E}
For any nonempty vertex set S ⊆ V ,

κ(G;S) =
(∏

e∈E

αe

)
detL[S].

Proof. See Tutte [Tut01, Section VI.6, Equation (VI.6.7)]. □

Note that the classical (Kirchhoff’s) matrix-tree theorem is the special case,
where S is a singleton.

2.4. Tree splits and tree distance. Fix a tree G = (V,E) with edge lengths
{αe : e ∈ E} (and endowed with an arbitrary orientation). Given an edge e ∈ E,
the edge deletion G \ e contains two connected components. This phenomenon is
referred to as a tree split.

Using the orientation on e = (e+, e−), we let (G \ e)+ denote the component
that contains endpoint e+, and let (G \ e)− denote the component that contains
endpoint e−. For any e ∈ E and v ∈ V , we denote by (G \ e)v the component of
G \ e containing v, and (G \ e)v the component not containing v.
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Tree splits can be used to express the path distances between vertices in a tree
as we explain next. Given an edge e ∈ E and vertices v, w ∈ V , let

δ(e; v, w) =

1 if e separates v from w,

0 otherwise.

Remark 2.5.
(i) If we fix an edge e, then δ(e; −,−) : V × V → {0, 1} is the indicator

function for vertex pairs (v, w) that are on opposite sides of the tree split
G \ e.

(ii) In particular, if we fix e and a vertex v, then δ(e; v,−) : V (G) → {0, 1} is
the indicator function for the component (G \ e)v of the tree split G \ e
not containing v.

(iii) If we fix vertices v, w, then δ(−; v, w) : E(G) → {0, 1} is the indicator
function for the unique path between v and w.

Recall the distance between vertices v, w (with respect to edge lengths {αe : e ∈
E}), denoted by d(v, w), is defined as the sum of the edge lengths αe along the
unique path from u to v.

Proposition 2.6. For a tree G = (V,E) with edge lengths {αe : e ∈ E}, the
corresponding distance function satisfies

d(v, w) =
∑
e∈E

αe δ(e; v, w).

Proof. This follows from Remark 2.5 (iii). □

2.5. Outdegree of forest components. Given a vertex v in a graph, the degree
deg(v) is the number of edges incident to v. A consequence of the “handshaking
lemma” in graph theory is that for any tree G, we have
(8)

∑
v∈V (G)

(2 − deg(v)) = 2.

We next state a slight generalization (8), which will be useful later.
Given a connected subgraph H ⊆ G, we define the edge boundary ∂H as the set

of edges which join H to its complement; i.e.
∂H = {e = {a, b} ∈ E : a ∈ V (H), b ̸∈ V (H)}.

We define the outdegree of H in G as the number of edges in its edge boundary,
outdeg(H) = |∂H|. Note that the edge boundary and outdegree do not depend
on the implicit orientation on E.

We are especially interested in the following special cases. Let G be a tree and
∅ ≠ S ⊆ V . For an S-rooted spanning forest F of G, and s ∈ S, we define the
outdegree outdeg(F, s) as the number of edges which join F (s) (the s-component
of F ) to a different component; i.e. outdegree of F (s) in the tree G. Similarly, if
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F is a (S, ∗)-rooted spanning forest of G, we let outdeg(F, ∗) denote the outdegree
of the floating component F (∗).

Example 2.7. Consider the tree G from Example 2.1, where S is the set of three
leaf vertices. In Figure 4, we show examples of rooted spanning forests of G, where
each component is labelled by outdeg(F, s), for a leaf vertex s, or outdeg(F, ∗) for
the floating component.

1
2

1 1
1

1
3

Figure 4. An S-rooted spanning forest (left) and an (S, ∗)-rooted
spanning forest (right). Each forest component is labelled with its
outdegree.

In consideration of the next lemma, we also show G labelled with 2 − deg(v) on
each vertex, below.

1 1
1

0 −1 0 0

Lemma 2.8. Suppose G is a tree.
(a) If H ⊆ G is a nonempty connected subgraph then∑

v∈V (H)
(2 − deg(v)) = 2 − outdeg(H).

(b) For any fixed edge e and fixed vertex u of G, we have∑
v∈V (G)

(2 − deg(v)) δ(e;u, v) = 1.

Proof. (a) This is straightforward to check by induction on |V (H)|, with base case
|V (H)| = 1: if H = {v} consists of a single vertex, then outdeg(H) = deg(v).

(b) Recall that (G \ e)u denotes the component of the tree split G \ e that does
not contain u. Its vertices are precisely those v that satisfy δ(e;u, v) = 1 (see
Remark 2.5 (iii)), so∑

v∈V

(2 − deg(v))δ(e;u, v) =
∑

v∈(G\e)u

(2 − deg(v)).

Since the subgraph (G \ e)u has a single edge separating it from its complement,
we have outdeg((G \ e)u) = 1. Apply part (a) to obtain the result. □
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2.6. Transitions between F1(G;S) and F2(G;S). A key step in the proof of
Theorem B uses the following “transition structure” which relates the S-rooted
spanning forests F1(G;S) with (S, ∗)-rooted spanning forests F2(G;S), via the
operations of edge-deletion and edge-union.
• Consider the “deletion map”

E(G) × F1(G;S) del−→ F1(G;S) ⊔ F2(G;S)
defined by

(e, T ) 7→

T if e ̸∈ T,

T \ e if e ∈ T.

Given F ∈ F2(G;S), there are exactly outdeg(F, ∗)-many choices of pairs
(e, T ) ∈ E(G) × F1(G;S) such that F = T \ e.

• Consider the “union map”
E(G) × F2(G;S) −→ F1(G;S) ⊔ F2(G;S)

defined by

(e, F ) 7→

F ∪ e if e ∈ ∂F (∗),
F if e ̸∈ ∂F (∗)

Given T ∈ F1(G;S), there are exactly (|V | − |S|)-many choices of pairs (e, F ) ∈
E(G) × F2(G;S) such that T = F ∪ e.

3. Principal submatrices of D as bilinear forms

Let G = (V,E) be a tree with edge lengths α = {αe : e ∈ E}. The distance
matrix (with respect to α) is symmetric, so it defines a symmetric bilinear forms
on the vector space RV .

3.1. Signature and invertibility. For a subset of vertices S with |S| ≥ 2, the
submatrix D[S] has nonzero determinant. We give a proof in here, based on finding
the signature of D[S] as a bilinear form.

We first recall a celebrated result of Cauchy. Let M [i] denote the matrix obtained
from M by deleting the i-th row and column.

Proposition 3.1 (Cauchy interlacing). Suppose M is a symmetric real matrix
with eigenvalues λ1 ≤ · · · ≤ λn. Then the submatrix M [i] has eigenvalues µ1 ≤
· · · ≤ µn−1 satisfying

λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ µn−1 ≤ λn.

Proof. See, for example, [HJ13, Theorem 4.3.17]. □

Lemma 3.2 ([Bap10, Lemma 8.15]). Suppose D is the distance matrix of a tree
with n vertices and edge lengths {αe : e ∈ E}. Then D has one positive eigenvalue
and n− 1 negative eigenvalues.
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Remark 3.3. The proof in [Bap10] is by induction on the number of vertices, and
uses Cauchy interlacing (Proposition 3.1). Lemma 8.15 in [Bap10] is actually stated
for trees without edge lengths. However, the same argument applies to trees with
edge lengths if one applies Bapat, Kirkland, Neumann’s result [BKN05, Corollary
2.5] (see (2)).

The the following extension of Lemma 3.2 and its proof was communicated to
the authors by Bapat (personal communication).
Lemma 3.4. Suppose D is the distance matrix of a tree G = (V,E) with edge
lengths {αe : e ∈ E}. Let S ⊆ V be a subset of size |S| ≥ 2. Then D[S] has one
positive eigenvalue and |S| − 1 negative eigenvalues. In particular, detD[S] ̸= 0.
Proof. We apply decreasing induction on the size of S. For S = V , we have
Lemma 3.2. Now suppose |S| = k where 2 ≤ k < n, and assume, by induction
hypothesis, that the claim holds for all vertex subsets of size greater than k. Let
S+ ⊆ V be a set of k + 1 vertices containing S. The inductive hypothesis states
that D[S+] has k negative eigenvalues and one positive eigenvalue, so Cauchy
interlacing (Proposition 3.1) from D[S+] implies that D[S] has at least k − 1
negative eigenvalues. Since all diagonal entries of D[S] are zero, D[S] has zero
trace. Thus the remaining eigenvalue of D[S] must be positive. □

3.2. Negative definite hyperplane. We next prove that any principal submatrix
of D induces a negative semidefinite quadratic form on the hyperplane of zero-sum
vectors.

Bapat, Kirkland, and Neumann ([BKN05, Theorem 2.1]) prove that

(9) (D)−1 = −1
2L+ 1

2

(∑
e∈E

αe

)−1
m m⊺

where m is the vector with components mv = 2 − deg v. The special case of (9)
for trees without edge lengths had appeared in an earlier work by Graham and
Lovász ([GL78, Lemma 1]).
Proposition 3.5. Let D denote the distance matrix of a tree with edge lengths
{αe : e ∈ E}. Let L be the Laplacian matrix. Then

D = −1
2DLD + 1

2

(∑
e∈E

αe

)
11⊺.

Proof. Multiply (9) by the all-ones vector 1; since L1 = 0 and m⊺1 = 2 (see (8)),
we obtain

(D)−11 =
(∑

e∈E

αe

)−1
m.

Therefore,

(10) Dm =
(∑

e∈E

αe

)
1.
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The result now follows from multiplying (9) by D on both sides, and using (10). □

Proposition 3.6. Suppose D is the distance matrix of a tree with edge lengths
{αe : e ∈ E}. Let S ⊂ V be a nonempty vertex subset.

(a) Let H0,S ⊂ RS be the hyperplane of vectors whose coordinates sum to zero.
Then the function u 7→ u⊺D[S]u is concave on H0,S.

(b) Let Hc,S be the affine hyperplane of vectors whose coordinates sum to c.
Then the function u 7→ u⊺D[S]u is concave on Hc,S.

Proof. (a) Suppose u is in H0,S, so that 1⊺u = 0. Using Proposition 3.5, we obtain

u⊺Du = −1
2u⊺DLDu + 0.

It is well-known that the Laplacian matrix L is positive semidefinite (this readily
follows from (7)). Thus u 7→ (Du)⊺L(Du) is convex on H0,S, so the claim follows.

(b) For u in Hc,S, we have

u⊺Du = −1
2u⊺DLDu + 1

2
(∑

αe

)
c2.

As u varies in Hc,S, the term 1
2 (∑αe) c2 remains constant. Thus the concavity

depends only on the first term, which agrees with part (a). □

4. Quadratic optimization

Here, we explain how the quantity (detD[S]/cof D[S]), introduced in §1.2 arises
as the solution of a quadratic optimization problem.
Proposition 4.1. Suppose D is the distance matrix of a tree with edge lengths
{αe : e ∈ E}. If D[S] is a principal submatrix of a distance matrix indexed by a
nonempty subset S of vertices, then

detD[S]
cof D[S] = max{u⊺D[S]u : u ∈ RS, 1⊺u = 1}.

Proof. If |S| = 1 then D[S] is the zero matrix and the statement is true trivially.
Assume |S| ≥ 2. Proposition 3.6 (b) implies that the objective function u 7→

u⊺D[S]u is concave on the domain 1⊺u = 1, so any critical point is a global
maximum. To find the critical points using the method of Lagrange multipliers,
we must compute the gradients of the objective function and the constraint. The
gradient of the objective function (i.e. u⊺D[S]u) is 2D[S]u, and the gradient of
the constraint (i.e. 1⊺u) is 1. By the theory of Lagrange multipliers, the optimal
solution u∗ is a vector satisfying

D[S]u∗ = λ1 for some λ ∈ R.
The constant λ is, in fact, the optimal objective value, since

(u∗)⊺D[S]u∗ = (u∗)⊺(λ1) = λ(1⊺u∗)⊺ = λ.

The last equality uses the given constraint 1⊺u = 1.
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On the other hand, D[S] is invertible by Lemma 3.4. Therefore, we have
u∗ = λ(D[S]−11), so

1 = 1⊺u∗ = λ(1⊺D[S]−11) = λ
cof D[S]
detD[S] .

Thus the optimal objective value is λ = detD[S]
cof D[S] . □

Remark 4.2. If we consider G as a resistive electrical network, with each edge e
representing a resistor of resistance αe, then the optimal vector u∗ has a physical
interpretation as a current flow: it records the currents in the network when
external current enters the network in the amount (deg(v)−2)/2 for each v ∈ V \S,
and exits from the nodes in S, and the network is grounded at all nodes in S.
Indeed, we give an explicit combinatorial expression for u∗, up to a normalizing
constant, in (11). It is a classical result in network theory that this gives the
current flow as described; see, for example, Tutte [Tut01, Section VI.6].

We note the following restatement of Proposition 4.1, viewing RS as a subspace
of RV where coordinates indexed by V \ S are set to zero.
Corollary 4.3. If D[S] is a principal submatrix of a distance matrix indexed by
S, then

detD[S]
cof D[S] = max{u⊺Du : u ∈ RV , 1⊺u = 1, uv = 0 if v ̸∈ S}.

4.1. Cofactor sums. Next we recall a connection between minors of the Laplacian
matrix and cofactor sums of the distance matrix, when G is a tree. The result is
essentially due to Bapat and Sivasubramanian ([BS11]).

Recall from §1.2 that cof M denotes the sum of cofactors of M , i.e. cof M =
n∑

i=1

n∑
j=1

(−1)i+j detM [i, j] where M [i, j] denotes the matrix with the i-th row and

j-th column deleted. Recall that κ(G;S) := ∑
T ∈F1(G;S) w(T ).

Theorem 4.4 (Distance submatrix cofactor sums). Let G = (V,E) be a tree with
edge lengths {αe : e ∈ E}, and let D be the distance matrix of G. Let S ⊆ V be a
nonempty subset of vertices. Then

cof D[S] = (−2)|S|−1κ(G;S).
Proof. Bapat and Sivasubramanian ([BS11, Theorem 11]) show that

cof D[S] = (−2)|S|−1
(∏

e∈E

αe

)
detL[S]

where L is the Laplacian matrix. Combine this identity with Theorem 2.4. □

The following result is a direct consequence of theorems of Bapat, Kirkland,
Neumann ([BKN05]) and Bapat, Sivasubramanian ([BS11]).
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Proposition 4.5. Suppose D is the distance matrix of a tree with edge lengths
{αe : e ∈ E}. Then

detD
cof D = 1

2
∑
e∈E

αe.

Proof. Consider Theorem 4.4 with S = V . In this case F1(G;V ) is a singleton
consisting of the forest T with no edges, so w(T ) is the product of all edge lengths.
Thus

cof D = (−2)n−1 ∏
e∈E

αe.

Combining this with (2) yields the result. □

4.2. Monotonicity. Using Proposition 4.1, we can now prove Theorem C and
Theorem D.

Proof of Theorem C. By Corollary 4.3, both values detD[A]
cof D[A] and detD[B]

cof D[B] arise

from optimizing the same objective function on an affine subspace of RV , but the
subspace for A is contained in the subspace for B. □

Proof of Theorem D. (a) To see
detD[S]
cof D[S] ≤ 1

2
∑

e∈E(conv(S,G))
αe,

take B as the set of all vertices in conv(S,G). Then S ⊆ B, and apply Theorem C.
By Proposition 4.5 we have

detD[B]
cof D[B] = 1

2
∑

e∈E(conv(S,G))
αe.

(b) Recall that γ is a simple path between vertices s0, s1 ∈ S. To see
1
2
∑
e∈γ

αe ≤ detD[S]
cof D[S] ,

let A = {s0, s1}. Then A ⊆ S by assumption. Now apply Theorem C. By
Proposition 4.5 we have

detD[A]
cof D[A] = 1

2d(s0, s1) = 1
2
∑
e∈γ

αe. □

5. Proof of Theorems A and B

In this section, we prove our main result, Theorem B. Theorem A is an immediate
corollary. The arguments do not make use of results in §4.
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5.1. Outline of the proof. We compute detD[S] via the following steps.
(I) Find a vector m ∈ RS such that D[S]m = λ1. Find λ.

(II) Compute the sum of entries of m, i.e. 1⊺m.
(III) Since D[S] is nonsingular (Lemma 3.2), m = λ(D[S]−11) and

1⊺m = λ(1⊺D[S]−11) = λ
cof D[S]
detD[S] .

Calculate detD[S]
cof D[S] = λ

1⊺m
.

(IV) Multiply previous expression by cof D[S], using expression in Theorem 4.4,
to compute detD[S].

It turns out that the entries of m are combinatorially meaningful (see (11)),
which also gives combinatorial meaning to the constant λ.

5.2. Equilibrium vector identities. Fix a tree G = (V,E) with edge lengths
{αe : e ∈ E} and a nonempty subset S ⊆ V . We first define a vector m which
satisfies the relation D[S]m = λ1 for some λ.
Definition 5.1. Let m = m(G;S) denote the vector in RS be defined by
(11) mv =

∑
T ∈F1(G;S)

w(T )(2 − outdeg(T, v)) for each v ∈ S.

where outdeg(T, v) is the outdegree of the v-component of T (see §2.5). We call
m the equilibrium vector of (G;S).

The choice of terminology “equilibrium” here is in reference to potential theory,
c.f. [Tsu75][Ste23].
Proposition 5.2. Suppose S is nonempty. For the vector m = m(G;S) defined
above, we have

(a) 1⊺m = 2
∑

T ∈F1(G;S)
w(T );

(b) m is nonzero.
Proof. (a) By Lemma 2.8 we can express outdeg(T, s) as a sum over vertices in
T (s),

ms =
∑

T ∈F1(G;S)
w(T )(2 − outdeg(T, s)) =

∑
T ∈F1(G;S)

w(T )
 ∑

v∈T (s)
(2 − deg(v))

 .
Then exchange the order of summation in 1⊺m,

1⊺m =
∑
s∈S

ms =
∑
s∈S

 ∑
T ∈F1(G;S)

w(T )
∑

v∈T (s)
(2 − deg(v))


=

∑
T ∈F1(G;S)

w(T )
∑

s∈S

∑
v∈T (s)

(2 − deg(v))
 .
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Observe that the inner double sum is simply a sum over v ∈ V , since the vertex
sets {T (s) for s ∈ S} form a partition of V by definition of T being S-rooted
spanning forest. Thus

1⊺m =
∑

T ∈F1(F ;S)
w(T )

(∑
v∈V

(2 − deg(v))
)

=
∑

T ∈F1(F ;S)
w(T ) · 2

where we apply equation (8) for the last equality.
(b) All edge lengths are positive, so w(T ) > 0 for all T , and F1(G;S) is nonempty

as long as S is nonempty. Therefore, part (a) implies that 1⊺m > 0. □

The following computation is the technical heart of our main result.

Theorem 5.3. With m = m(G;S) defined as in (11), D[S]m = λ1 for the
constant

λ =
∑

e∈E(G)
αe

∑
T ∈F1(G;S)

w(T ) −
∑

F ∈F2(G;S)
w(F ) (2 − outdeg(F, ∗))2.

Proof. For e ∈ E and v, w ∈ V , let δ(e; v, w) denote the function defined in §2.4.
For any v ∈ S, we have

(D[S]m)v =
∑
s∈S

d(v, s)ms

=
∑
s∈S

 ∑
e∈E(G)

αe δ(e; v, s)
 ∑

T ∈F1(G;S)
(2 − outdeg(T, s))w(T )


=

∑
T ∈F1(G;S)

w(T )
∑
e∈E

αe

(∑
s∈S

δ(e; v, s)(2 − outdeg(T, s))
)

=
∑

T ∈F1(G;S)
w(T )

∑
e∈E

αe

∑
s∈S

δ(e; v, s)
∑

u∈T (s)
(2 − deg(u))

 .(12)

The second line follows from Proposition 2.6 and (11). The last line follows from
using Lemma 2.8 for the subgraph H = T (s).

We introduce additional notation to handle the double sum in parentheses in
(12). Each S-rooted spanning forest T naturally induces a surjection πT : V → S,
defined by

πT (u) = s if and only if u ∈ T (s), the s-component of T .
Using this notation,

(13) (D[S]m)v =
∑

T ∈F1(G;S)
w(T )

∑
e∈E

αe

(∑
u∈V

(2 − deg(u))δ(e; v, πT (u))
)

We will compare how the above expression changes after replacing δ(e; v, πT (u))
with δ(e; v, u).
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From Lemma 2.8 (b), we have
∑
u∈V

(2 − deg(u))δ(e; v, u) = 1. Thus

(14)
∑

T ∈F1(G;S)
w(T )

∑
e∈E

αe =
∑

T ∈F1(G;S)
w(T )

∑
e∈E

αe

(∑
u∈V

(2 − deg(u))δ(e; v, u)
)

By subtracting equation (14) from (13), we obtain

(15) (D[S]m)v −
∑

T ∈F1(G;S)
w(T )

∑
e∈E

αe

=
∑

T ∈F1(G;S)
w(T )

∑
e∈E

αe

∑
u∈V

(2 − deg(u))
(
δ(e; v, πT (u)) − δ(e; v, u)

)
.

For the rest of the argument, let (⋆) = (D[S]m)v −
∑

T ∈F1(G;S)
w(T )

∑
e∈E

αe.

We focus on the inner expression δ(e; v, πT (u)) − δ(e; v, u), where we suppose e,
v, and T are fixed. Recall that
(16) δ(e; v, πT (u)) − δ(e; v, u) = 1(πT (u) ∈ (G \ e)v) − 1(u ∈ (G \ e)v),
c.f. Remark 2.5 (ii). Now consider varying u over all vertices, when e, T , and v
are fixed. We have the following three cases:
• Case 1: if e ̸∈ T , then u and πT (u) are on the same side of the tree split G \ e,

for every vertex u. In this case δ(e; v, πT (·)) − δ(e; v, ·) = 0.
• Case 2: if e ∈ T and πT (e) is separated from v by e, then δ(e; v, πT (·)) − δ(e; v, ·)

is the indicator function for the floating component of T \ e. See Figure 5, left.
• Case 3: if e ∈ T and πT (e) is on the same component as v from e, then
δ(e; v, πT (·)) − δ(e; v, ·) is the negative of the indicator function for the floating
component of T \ e. See Figure 5, right.

e

v
πT (e)

e

πT (e)
v

Figure 5. Edge e ∈ T with δ(e; v, πT (e)) = 1 (left) and
δ(e; v, πT (e)) = 0 (right). The floating component of T \ e is high-
lighted.

Thus, when multiplying the term (16) by (2 − deg(u)) and summing over all
vertices u, we obtain∑

u∈V

(2 − deg(u)) (δ(e; v, πT (u)) − δ(e; v, u))

=


0 if e ̸∈ T,

2 − outdeg(T \ e, ∗) if e ∈ T (s0) and δ(e; v, s0) = 1,
−(2 − outdeg(T \ e, ∗)) if e ∈ T (s0) and δ(e; v, s0) = 0.

(17)
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Therefore substituting (17) into (15) yields

(18) (⋆) =
∑

T ∈F1(G;S)
w(T )

∑
e∈T

αe×

(2 − outdeg(T \ e, ∗))
(
1(δ(e; v, πT (e)) = 1)− 1(δ(e; v, πT (e)) = 0)

)
,

where we use the shorthand (⋆) = (D[S]m)v −
∑

T ∈F1(G;S)
w(T )

∑
e∈E

αe.

We now rewrite the above expression in terms of F2(G;S). Observe in (18)
that the deletion T \ e is an (S, ∗)-rooted spanning forest of G, and that the
corresponding weights satisfy

w(F ) = αe · w(T ) if F = T \ e.
Note that F = T \ e is equivalent to T = F ∪ e, and in particular this only occurs
when we choose the edge e to be in the floating boundary ∂F (∗).

Thus
(⋆) =

∑
F ∈F2

w(F )(2 − outdeg(F, ∗))×

∑
e∈∂F (∗)

(
1(δ(e; v, π(F ∪e)(e)) = 1) − 1(δ(e; v, π(F ∪e)(e)) = 0)

)
=

∑
F ∈F2

w(F )(2 − outdeg(F, ∗))×
#{e ∈ ∂F (∗) : δ(e; v, π(F ∪e)(e)) = 1} − #{e ∈ ∂F (∗) : δ(e; v, π(F ∪e)(e)) = 0}

.

Now for any e ̸∈ F , let δ(e; v, F (∗)) = δ(e; v, x) for any x ∈ F (∗), i.e.

δ(e; v, F (∗)) =

1 if e lies on path from v to F (∗),
0 otherwise.

The condition that δ(e; v, π(F ∪e)(e)) = 1 (respectively, δ(e; v, π(F ∪e)(e)) = 0) is
equivalent to δ(e; v, F (∗)) = 0 (respectively, δ(e; v, F (∗)) = 1). For an illustration,
compare Figures 6 and 7. Therefore

(19) (⋆) =
∑

F ∈F2

w(F )(2 − outdeg(F, ∗))
#{e ∈ ∂F (∗) : δ(e; v, F (∗)) = 0}

− #{e ∈ ∂F (∗) : δ(e; v, F (∗)) = 1}

.
Finally, we observe that for any forest F in F2(G;S), there is exactly one edge e
in the boundary ∂F (∗) of the floating component which satisfies δ(e; v, F (∗)) = 1,
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namely the unique boundary edge on the path from the floating component F (∗)
to v. Hence

#{e ∈ ∂F (∗) : δ(e; v, F (∗)) = 1} = 1, and
#{e ∈ ∂F (∗) : δ(e; v, F (∗)) = 0} = outdeg(F, ∗) − 1.

Thus, the previous expression (19) simplifies as

(⋆) = −
∑

F ∈F2

w(F )(2 − outdeg(F, ∗))2

as desired. □

e v

F (∗) e

v

Figure 6. A forest F ∈ F2(G;S) and edge e ∈ ∂F (∗), with
δ(e; v, F (∗)) = 0 (left). After adding e to F to obtain T = F ∪ e ∈
F1(G;S), we have δ(e; v, πT (e)) = 1 (right).

e v

F (∗) e

v

Figure 7. A forest F ∈ F2(G;S) and edge e ∈ ∂F (∗), with
δ(e; v, F (∗)) = 1 (left). After adding e to F to obtain T = F ∪ e ∈
F1(G;S), we have δ(e; v, πT (e)) = 0 (right).

5.3. Principal minors of D. Finally we can prove our main theorems, giving
combinatorial expressions for detD[S].

Proof of Theorem B. First, suppose |S| = 1. Then D[S] is the zero matrix, and we
must show that the right-hand side is zero. Since G is a tree, F1(G; {v}) consists
of the tree G itself, with weight w(G) = 1. Moreover, the subgraphs in F2(G; {v})
are precisely G \ e for e ∈ E, and for each forest F = G \ e we have w(F ) = αe

and (outdeg(F, ∗) − 2)2 = 1. This shows that the right-hand side of (3) is zero.
Next, suppose |S| ≥ 2. Lemma 3.4 states that D[S] is nonsingular, so we may

use the inverse matrix identity

(20) 1⊺D[S]−11 = cof D[S]
detD[S] .
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Let m = m(G;S) denote the equilibrium vector (11). By Proposition 5.2 (a) and
Theorem 4.4,

1⊺m = 2
∑

T ∈F1(G;S)
w(T ) = cof D[S]

(−1)1−|S|22−|S| .

Theorem 5.3 states that D[S]m = λ1 for some constant λ, which is nonzero since
D[S] is invertible (see Lemma 3.4) and m is nonzero (see Proposition 5.2 (b)).
Hence

(21) 1⊺D[S]−11 = λ−11⊺m = cof D[S]
(−1)|S|−12|S|−1λ

.

Comparing (20) with (21) gives the desired result, detD[S] = (−1)|S|−12|S|−1λ. □

Proof of Theorem A. Set all lengths αe to 1 in Theorem B. In this case, the weights
w(T ) = 1 and w(F ) = 1 for all forests T and F , and∑

e∈E

αe = n− 1,
∑

T ∈F1(G;S)
w(T ) = κ(G;S). □

6. Examples

Example 6.1. Suppose G is a tree consisting of three edges joined at a central
vertex.

a
b

c

u

v

w

Suppose S consists of the leaf vertices {u, v, w}. Then

D[S] =

 0 a+ b a+ c
a+ b 0 b+ c
a+ c b+ c 0


which has determinant

detD[S] = 2(a+ b)(a+ c)(b+ c) = 2 ((a+ b+ c)(ab+ ac+ bc) − abc) .

The equilibrium vector (which satisfies D[S]m = λ1) in this example is

m =
(
ab+ ac ab+ bc ac+ bc

)⊺
.

Example 6.2. Suppose G is the tree with unit edge lengths shown below, with
five leaf vertices.

1

2 3
4

5
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Let S denote the set of five leaf vertices. Then

D[S] =


0 2 3 3 3
2 0 3 3 3
3 3 0 2 2
3 3 2 0 2
3 3 2 2 0

 .

There are 11 forests in F1(G;S):

There are 6 forests in F2(G;S):

Out of the floating components of forests in F2(G;S), 3 have outdegree three, 2
have outdegree four, and 1 has outdegree five.

The determinant of the distance submatrix is

detD[S] = 368 = (−1)423
(
6 · 11 − (3 · 12 + 2 · 22 + 1 · 32)

)
,

and the equilibrium vector is m =
(
5 5 4 4 4

)⊺
.

Example 6.3. Suppose G is the tree with edge lengths shown in Figure 8, with
four leaf vertices and two internal vertices. Let S denote the set of four leaf vertices.

a

b

c
d

e

1

2

3

4

Figure 8. Tree with four leaves, and varying edge lengths.

Then

D[S] =


0 a+ b a+ c+ d a+ c+ e

a+ b 0 b+ c+ d b+ c+ e
a+ c+ d b+ c+ d 0 d+ e
a+ c+ e b+ c+ e d+ e 0
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and the equilibrium vector is

m = abd


1
1
1

−1

+ abe


1
1

−1
1

+ acd


1
0
1
0

+ ace


1
0
0
1

+ ade


1

−1
1
1



+ bcd


0
1
1
0

+ bce


0
1
0
1

+ bde


−1
1
1
1

 .
The determinant of D[S] normalized by its sum of cofactors, is

detD[S]
cof D[S] = 1

2

(
(a+ b+ c+ d+ e)

− (abcd+ abce+ acde+ bcde) + 4(abde)
(abd+ abe+ acd+ ace+ ade+ bcd+ bce+ bde)

)
.
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