Ricci flow on graphs from effective resistance

Harry Richman, joint with Aleyah Dawkins, Vishal Gupta, Mark Kempton, William Linz, Jeremy Quail, Zachary Stier

AMS MRC and Fred Hutch Cancer Center

JMM: Ricci curvatures on graphs and applications 4 January 2024

Harry Richman (AMS MRC)

Resistance-based Ricci flow

Motivation

Problem: How to understand "geometry" of a graph?

- Real world: max flow / min cut, community detection
- Arithmetic geometry: bounding number of rational points
- Combinatorics: Laplacian eigenvalues, Kemeny's constant, ...

Why Ricci flow?

Related Problem: How to understand "geometry" of a manifold?
Poincare Conjecture: what conditions suffice for Mⁿ ≅ Sⁿ?

(image from Topping 2006)

Harry Richman	(AMS MRC)	Resistance-based Ricci flow	4 January 2024	3/19

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

Why Ricci flow?

Related Problem: How to understand "geometry" of a manifold?
Poincare Conjecture: what conditions suffice for Mⁿ ≅ Sⁿ?

Harry Richman	n (AMS MRC)
---------------	-------------

Resistance-based Ricci flow

4 January

Why effective resistance?

Close connections to:

- simple random walk on G
- \bullet uniformly random spanning trees on G

Recent breakthrough applications:

- graph sparsification (Spielman–Srivastava, 2009)
- traveling salesman problem (Anari–Oveis-Gharan, 2015)

Setting: graph G = (V, E), each edge e has a positive resistance ℓ_e How to compute the effective resistance ω_{ij} for vertices $i, j \in V$?

• series rule:
$$\omega_{ij} = a + b$$

• general case (??): combine series and parallel rules

3 × 4 3 ×

Setting: graph G = (V, E), each edge e has a positive resistance ℓ_e How to compute the **effective resistance** ω_{ij} for vertices $i, j \in V$?

• series rule:
$$\omega_{ij} = a + b$$

• general case (??): combine series and parallel rules

Setting: graph G = (V, E), each edge e has a positive resistance ℓ_e How to compute the **effective resistance** ω_{ij} for vertices $i, j \in V$?

• series rule:
$$\omega_{ij} = a + b$$

• general case (??): Wheatstone bridge

 $\omega_{ij} = ?$

Harry Richman (AMS MRC) Resistant

Resistance-based Ricci flow

4 January 2024

Setting: graph G = (V, E), each edge e has a positive resistance ℓ_e How to compute the **effective resistance** ω_{ij} for vertices $i, j \in V$?

• series rule:
$$\omega_{ij} = a + b$$

• general case (??): Wheatstone bridge

Harry Richman (AMS MRC)

$$\omega_{ij} = \frac{abd+abe+ade+bde+abc+ace+bcd+cde}{ad+ae+bd+be+ac+bc+cd+ce}$$

4 January 2024

 $\underline{\wedge}$ Series and parallel rules not sufficient to find effective resistance

• General case: use weighted sums of spanning trees

Theorem (Rayleigh's law)

For any edge e and vertices i, j we have

$$\frac{\partial}{\partial \ell_e} \omega_{ij} \ge 0.$$

- physically "obvious"
- \bullet mathematically \ldots

$$\frac{\partial}{\partial c}\omega_e = \frac{\partial}{\partial c}\left(\frac{abd + abe + ade + bde + abc + ace + bcd + cde}{ad + ae + bd + be + ac + bc + cd + ce}\right) =?$$

Harry Richman (AMS MRC)

4 January 2024

(2) (4) (2) (4)

ъ

Theorem (Rayleigh's law)

For any edge e and vertices i, j we have

$$\frac{\partial}{\partial \ell_e} \omega_{ij} \ge 0.$$

- physically "obvious"
- $\bullet\,$ mathematically $\ldots\,$

$$\frac{\partial}{\partial c}\omega_e = \frac{\partial}{\partial c} \left(\frac{abd + abe + ade + bde + abc + ace + bcd + cde}{ad + ae + bd + be + ac + bc + cd + ce} \right) = ?$$
$$= \left(\frac{ae - bd}{ad + ae + bd + be + ac + bc + cd + ce} \right)^2 ???$$

Theorem (Rayleigh's law)

For any edge e and vertices i, j we have

$$\frac{\partial}{\partial \ell_e} \omega_{ij} \ge 0.$$

- delete edge $\leftrightarrow \ell_e = +\infty$
- contract edge $\leftrightarrow \ell_e = 0$

Corollary (usual Rayleigh's law)

$$\omega_{ij}(G/e) \le \omega_{ij}(G \setminus e)$$

$$(AMS MRC) = Resistance-based Ricci flow = 4 January 2024 9/19$$

Resistance curvature on nodes

(Devriendt–Lambiotte 2022) define **node curvature** at $i \in V$ as

$$p_i = 1 - \frac{1}{2} \sum_{e \ni i} \frac{\omega_e}{\ell_e}.$$

					_	
Harry Richman (AMS MRC)	Resistance-based Ricci flow	4	January	2024		10 / 19

Resistance curvature on nodes

(Devriendt–Lambiotte 2022) define **node curvature** at $i \in V$ as

$$p_i = 1 - \frac{1}{2} \sum_{e \ni i} \frac{\omega_e}{\ell_e}$$

- A finite, vertex-transitive graph has (constant) positive node curvature.
- An infinite regular lattice is flat (zero curvature).
- An infinite tree has negative node curvature everywhere.

Ricci curvature on edges

(Devriendt–Lambiotte 2022) define **node curvature** at $i \in V$ as

$$p_i = 1 - \frac{1}{2} \sum_{e \ni i} \frac{\omega_e}{\ell_e}.$$

Can we make edge curvature "more local", in the sense that

$$p_i = \sum_{e \ni i} \mathbf{K}_{\vec{e}} \qquad \text{for edge curvatures } \mathbf{K}_{\vec{e}}?$$

 Harry Richman (AMS MRC)
 Resistance-based Ricci flow
 4 January 2024
 11/19

Ricci curvature on edges

(Devriendt–Lambiotte 2022) define **node curvature** at $i \in V$ as

$$p_i = 1 - \frac{1}{2} \sum_{e \ni i} \frac{\omega_e}{\ell_e}.$$

Can we make edge curvature "more local", in the sense that

$$p_i = \sum_{e \ni i} \mathbf{K}_{\vec{e}} \qquad \text{for edge curvatures } \mathbf{K}_{\vec{e}}?$$

Yes! Define

Harr

oriented edge curvature
$$K_{\vec{e}} = \frac{1}{\deg_i} - \frac{1}{2} \frac{\omega_e}{\ell_e}$$

edge curvature $K_e = \frac{1}{\deg_i} + \frac{1}{\deg_j} - \frac{\omega_e}{\ell_e}$
y Richman (AMS MRC) Resistance-based Ricci flow 4 January 2024 11/19

Resistance curvature on edges

Definition

On weighted graph (G, ℓ) , the Foster-Ricci curvature on edge e is

edge curvature
$$\mathbf{K}_e = \frac{1}{\deg_i} + \frac{1}{\deg_j} - \frac{\omega_e}{\ell_e}$$

• Constant-curvature graphs:

• Edge curvature gives more information than node curvature:

Resistance-based Ricci flow

Ricci flow from resistance

Definition

On weighted graph (G, ℓ) , the Foster-Ricci curvature on edge e is

edge curvature
$$\mathbf{K}_e = \frac{1}{\deg_i} + \frac{1}{\deg_j} - \frac{\omega_e}{\ell_e}$$

Consider resulting Ricci flow

$$\frac{d}{dt}\ell_e(t) = -\mathbf{K}_e(t)$$

where $K_e(t) = K_e(\ell(t))$.

What does Ricci flow look like?

Harry Richman (AMS MRC)

4 ⓓ → 4 ≧ → 4 ≧ → 4 January 2024

13/19

Theorem (Ricci flow existence, DGKLQRS)

For any edge-weighted graph (G, ℓ_0) , where $\ell_0 = \{\ell_{0,e} > 0 : e \in E(G)\}$, there exists T > 0 such that there exists a unique solution to Ricci flow for $t \in [0, T)$.

Proof sketch:

- On any finite box in positive orthant, curvature function $\{\ell_e : e \in E\} \mapsto \{K_e(\ell) : e \in E\}$ is differentiable
- Differentiable function on compact domain is Lipschitz
- Apply Picard–Lindelöf theorem

Ricci flow on positively curved graphs

Conjecture

Ricci flow preserves positively curved graphs.

Chain rule:
$$\frac{d}{dt} \mathbf{K}_e(t) = \sum_{f \in E} \frac{\partial \mathbf{K}_e}{\partial \ell_f} \cdot \frac{d\ell_f}{dt}$$

Lemma

For any edge
$$e$$
,

$$\frac{\partial}{\partial \ell_e} \mathbf{K}_e \ge 0;$$

2 For any edges $e \neq j$,

$$\frac{\partial}{\partial \ell_e} \mathbf{K}_f \le 0.$$

Proof sketch: apply Rayleigh's law.

Harry Richman (AMS MRC)

4 🗆 > 4 🗇 > 4 🖹 > 4 🖹 > 📑 4 January 2024

15/19

Previous work:

- Bai–Lin–Lu–Wang–Yau (2021) show existence of Ricci flow for Ollivier–Ricci curvature
- Devriendt–Lambiotte (2022) study Ricci flow for a different resistance-based edge curvature

Further questions: many notions of Ricci curvature on graphs exist.

• For which curvatures is it true that

$$\frac{\partial}{\partial \ell_e} \mathbf{K}_e \ge 0, \qquad \frac{\partial}{\partial \ell_e} \mathbf{K}_f \le 0?$$

• For which curvatures is it true that Ricci flow preserves positively-curved graphs?

イロト イポト イヨト イヨト

-

Ricci flow

Harry Richman (AMS MRC)

Resistance-based Ricci flow

4 January 2024

17/19

Alternative Ricci flow from resistance

Recall that Devriendt–Lambiotte define

node curvature
$$p_i = 1 - \frac{1}{2} \sum_{j \sim i} \omega_{ij},$$

* edge curvature $\kappa_{ij} = \frac{2}{\omega_{ij}} (p_i + p_j)$

Devriendt–Lambiotte consider $Ricci\ flow$ defined by differential equation

$$\frac{d}{dt}\omega_{ij}(t) = -\kappa_{ij}(t)\,\omega_{ij}(t) \qquad \text{where } \kappa_{ij} = \kappa_{ij}(G(\omega(t)))$$

2

Alternative Ricci flow from resistance

Recall that Devriendt–Lambiotte define

node curvature
$$p_i = 1 - \frac{1}{2} \sum_{j \sim i} \omega_{ij},$$

* edge curvature $\kappa_{ij} = \frac{2}{\omega_{ij}} (p_i + p_j)$

Devriendt–Lambiotte consider $Ricci\ flow$ defined by differential equation

$$\frac{d}{dt}\omega_{ij}(t) = -\kappa_{ij}(t)\,\omega_{ij}(t) \qquad \text{where } \kappa_{ij} = \kappa_{ij}(G(\omega(t)))$$

Features:

• in a path, leaf-edges shrink to zero-resistance, "edge contraction" Downsides:

• in trees with higher-degree vertices, leaf-edges don't always shrink

くし (1) (

• positive values of ω_{ij} may be "invalid"

Harry Richman (AMS MRC)	Resistance-based Ricci flow	4 January 2024	18 / 19

Effective resistance: quiz answer

Answer: $\omega_{ij} = \frac{140}{41}$

Harry Richman (AMS MRC)

Resistance-based Ricci flow

4 January 2024

A 3 >

3