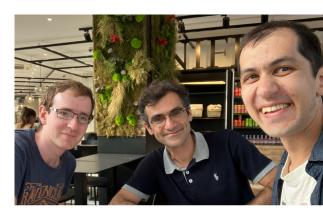
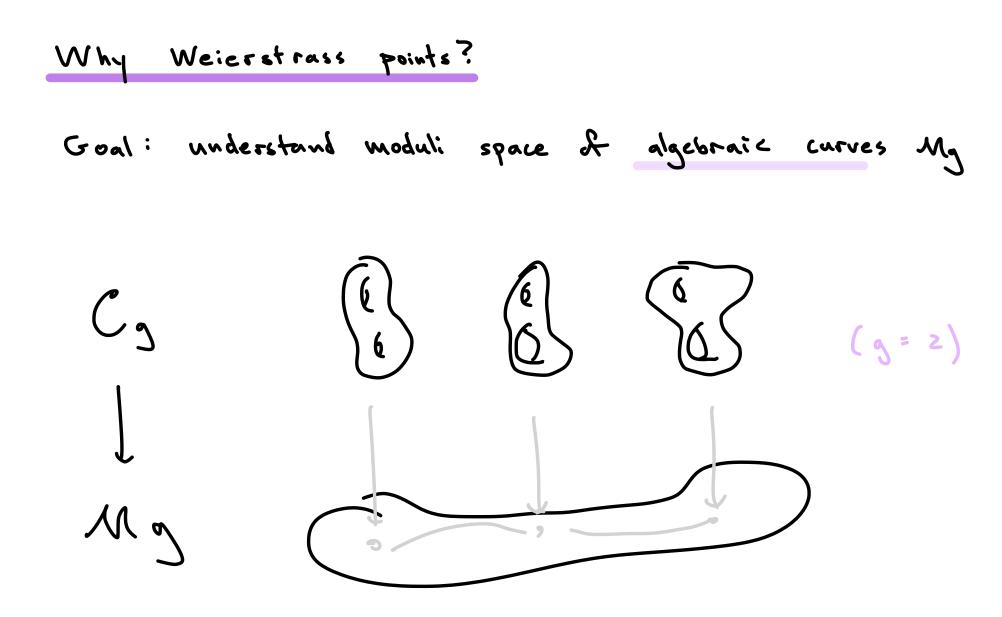
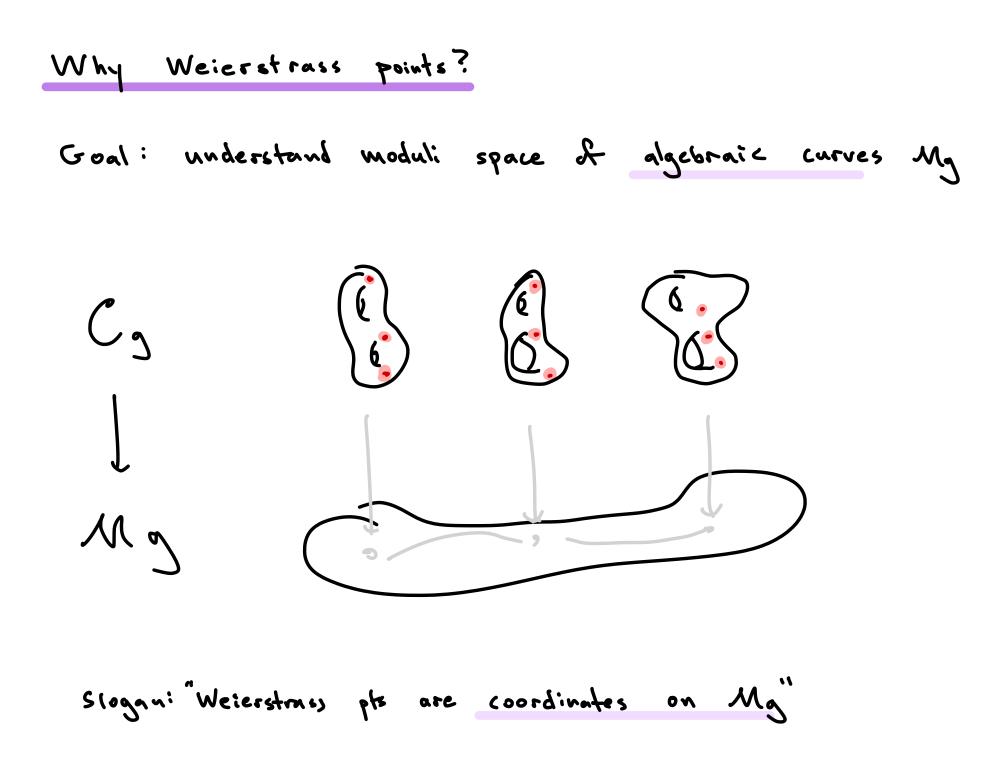
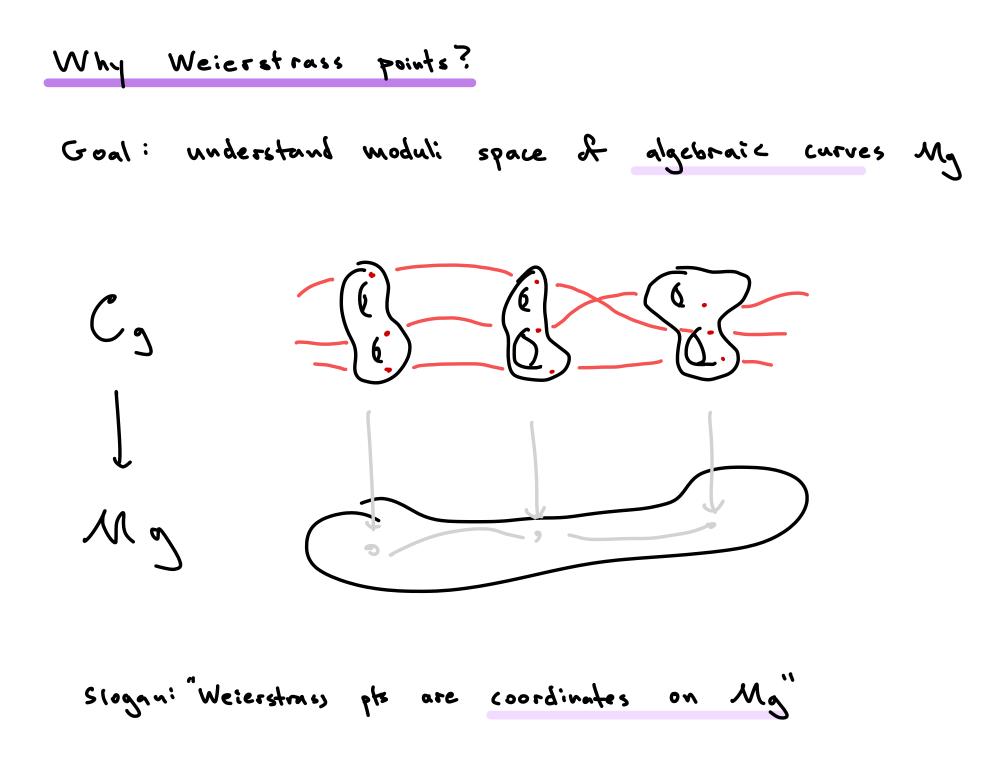
Weights of tropical Weierstrass points

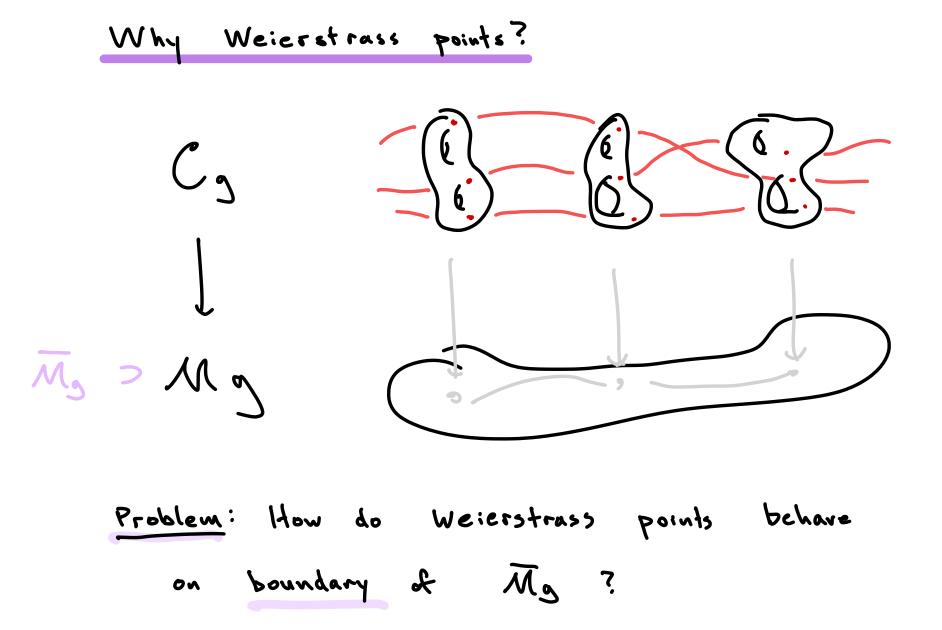


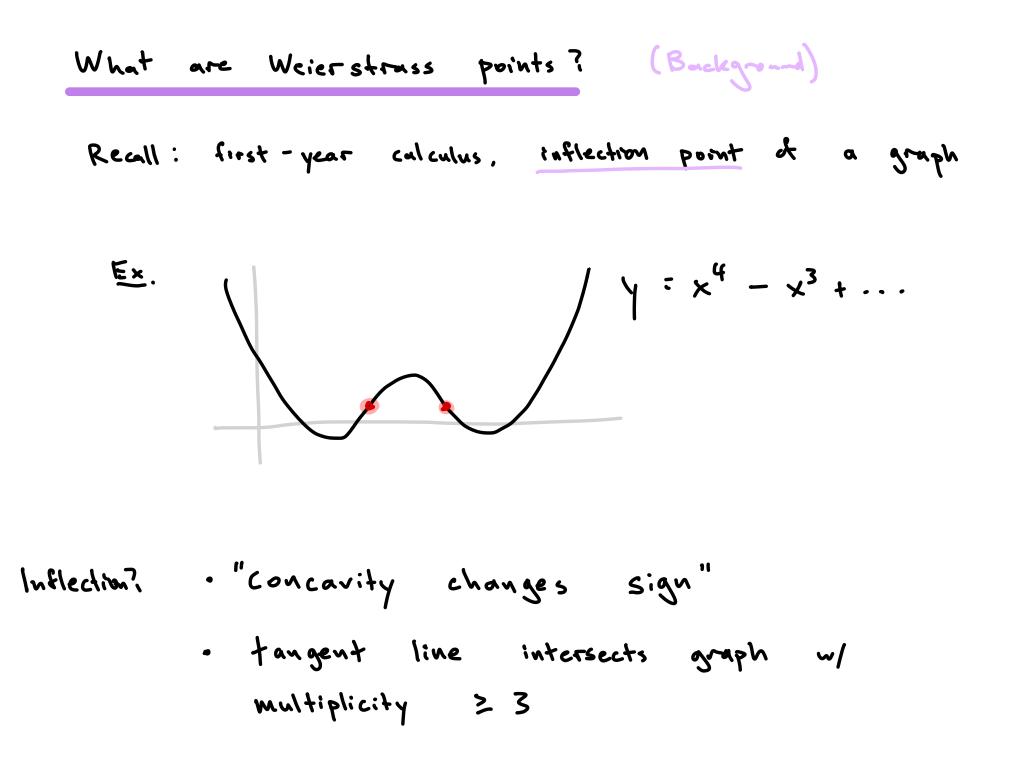
joint w/ Omid Amini & Lucas Gierczak Ecolé Polytechnique

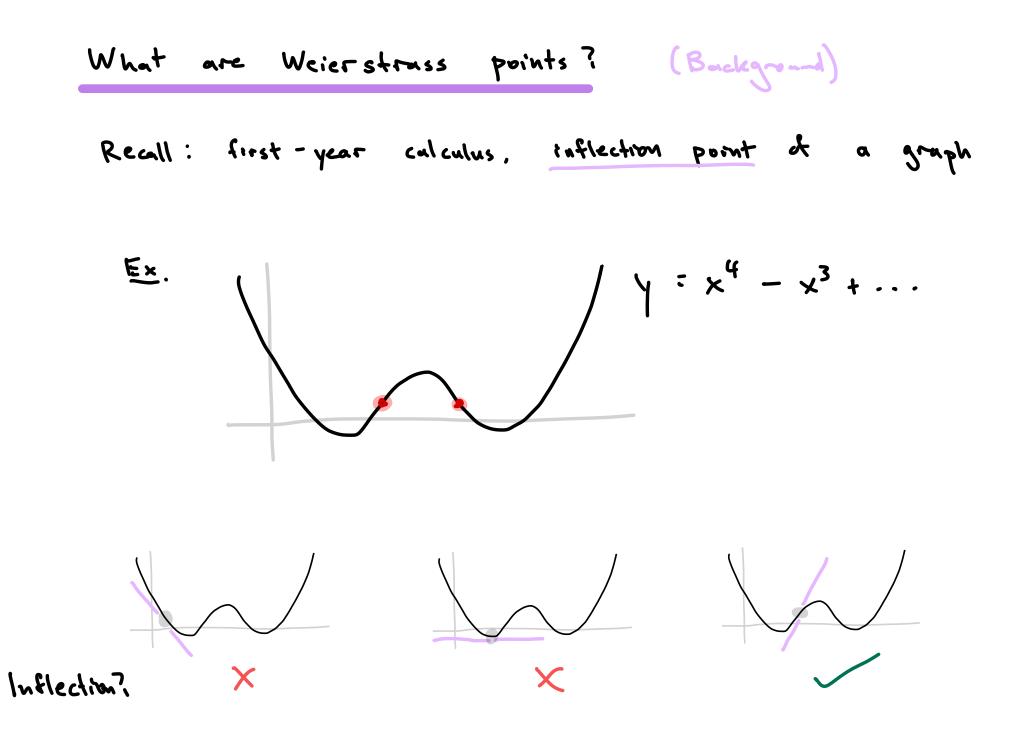




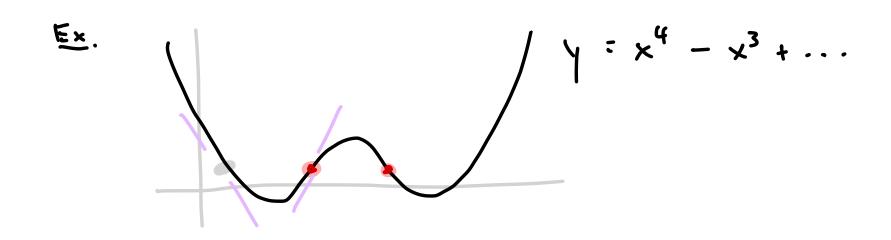








Recall: first-year calculus, inflection point of a graph



Fact: If polynomial f(x) has degree d_1 y = f(x) has $d - 2^{+}$ inflection pts

* counted w/ multiplicity

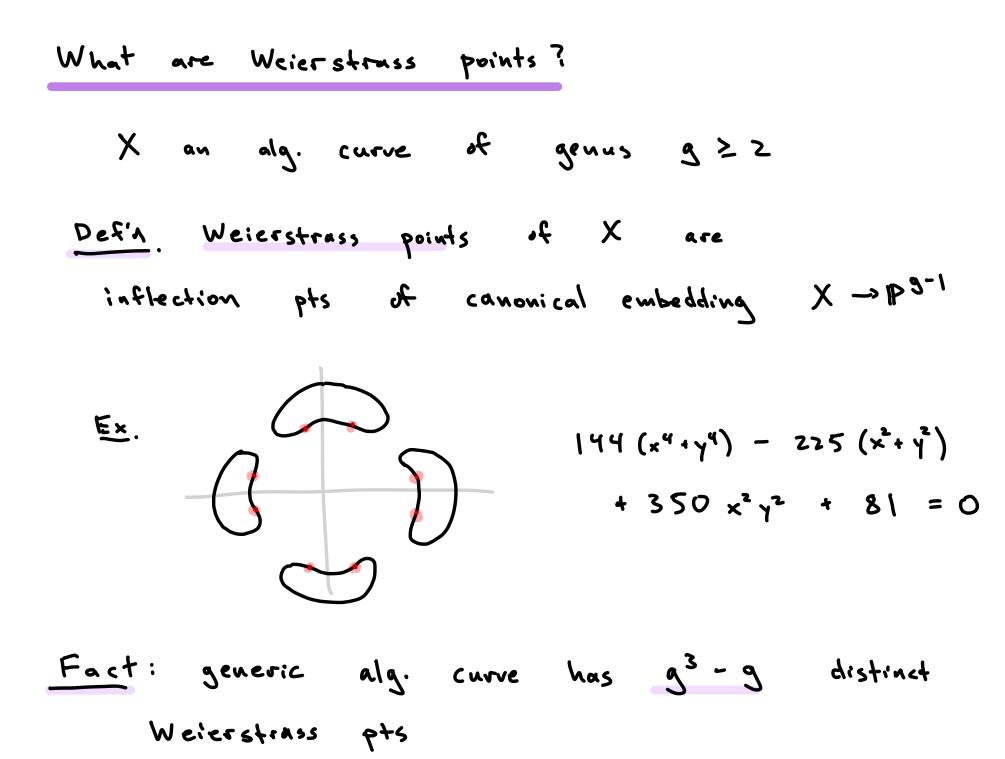
What are Weierstruss points?
X an alg. curve of genus
$$g \ge 2$$

Defin. Weierstrass points of X are
inflection pts of canonical embedding $X \rightarrow \mathbb{P}^{g-1}$
Ex.
 $g = 3$
 $G = 3$

ソ

"Trott curve" via Wikipedia

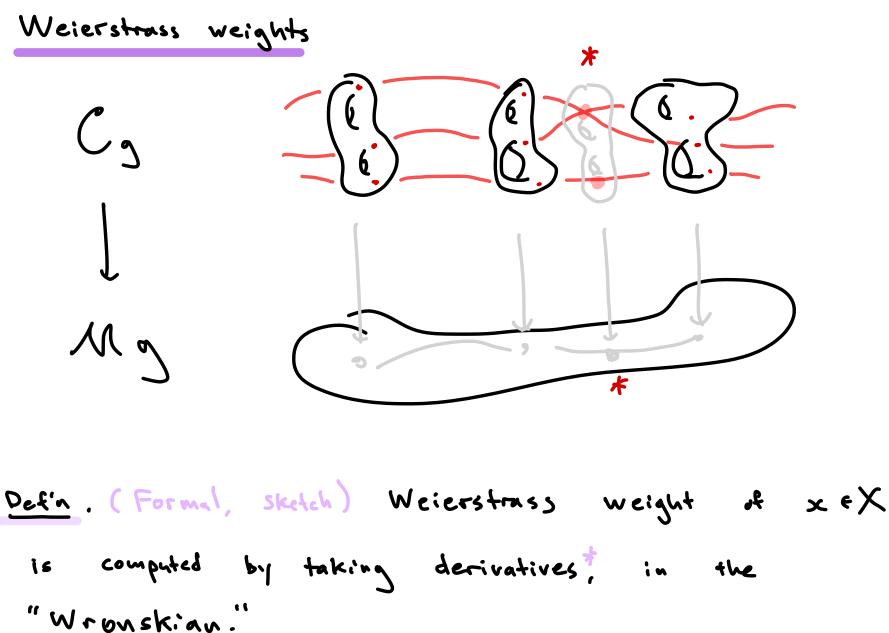
Q: How many inflection pts?



What are Weierstrass points?
X an alg. curve of genus
$$g \ge 2$$

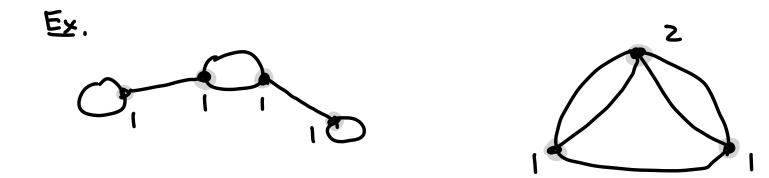
Defin. Weierstrass points of X are
inflection pts of canonical embedding $X \rightarrow \mathbb{P}^{S^{-1}}$
Divisor theory
Defin $x \in X$ is a Weierstrass point if
 $frequent$. \exists hyperplane $H \subset \mathbb{P}^{S^{-1}}$ with $H \cap X \ge g \cdot X$
 $\cdot \exists$ effective divisor $D \sim K$ with $D \ge g \cdot X$

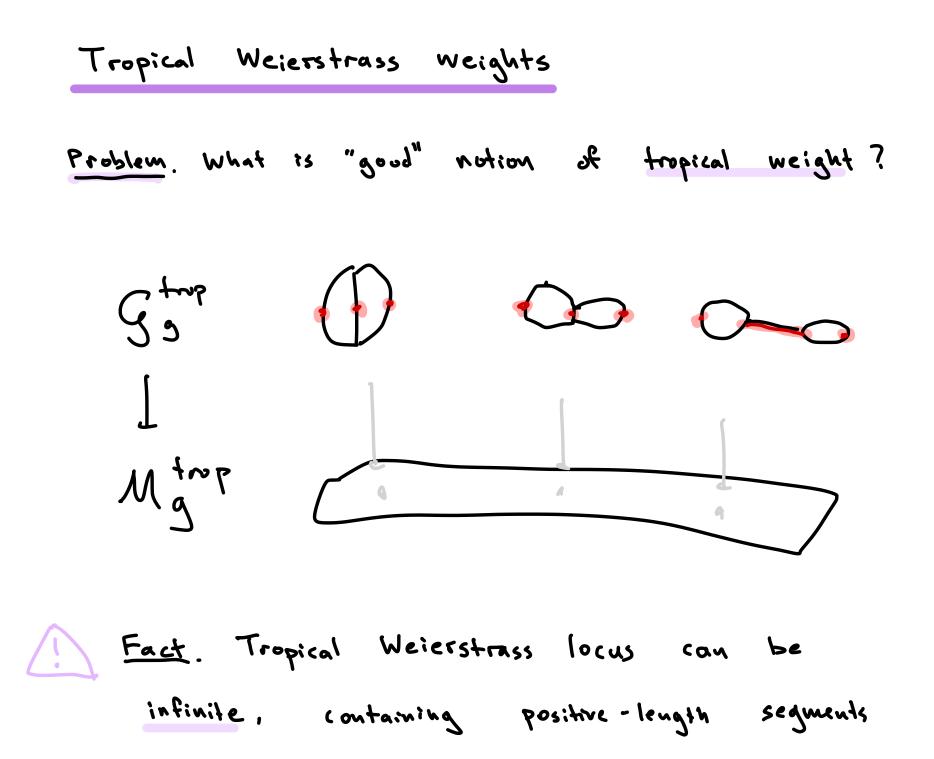




* NOT tropical :

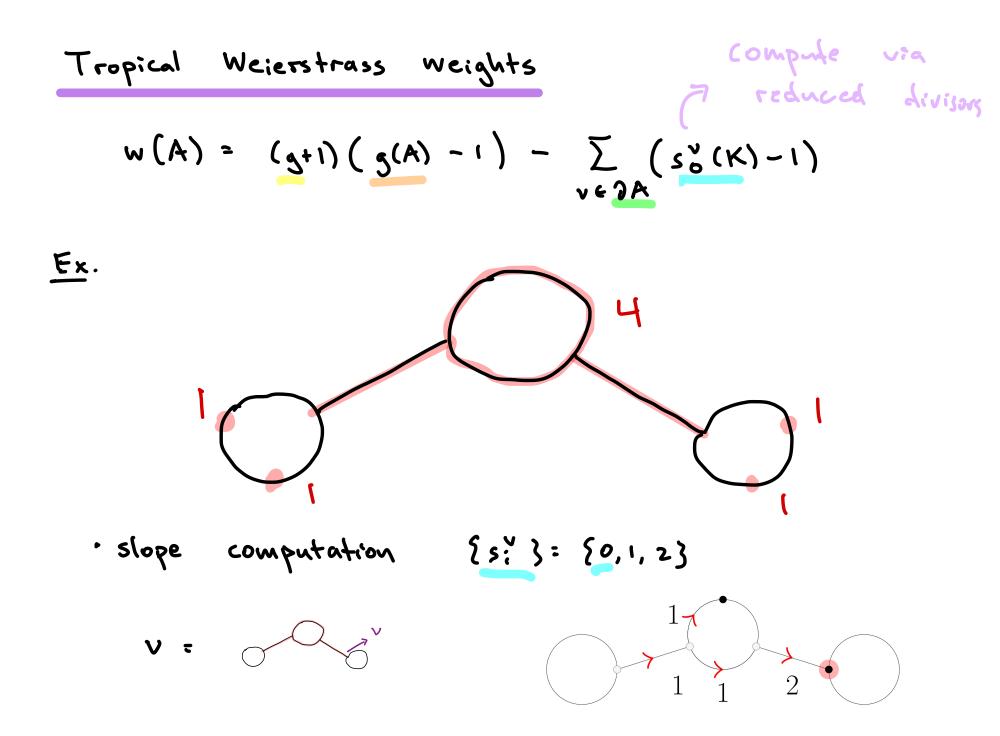
Recall :





Tropical Weierstrass Weights

$$\Gamma$$
 • metric graph of genus g
Defin. (AGR) The Weierstrass weight of a closed,
ronnected subset $A \in \Gamma$ is
 $W(A) = (g+1)(g(A) - 1) - \sum_{v \in \partial A} (s_{v}^{v}(K) - 1))$
where $g(A) = genus$ of graph
 $g(A) = genus$ of graph
 $g(A) = genus$ of subset
 $\partial A = outgoing$ directions from A
 $s_{v}^{v}(K) = minimal slope gloug direction v
in Rat(K)$



Tropical Weierstrass Weights

$$w(A) = (s+1)(s(A) - 1) - \sum_{v \in 2A} (s_{o}^{v}(K) - 1)$$
Ex.

$$(A) = (3+1)(1 - 1) - ((0-1) + \cdots) = 4$$

$$w(A) = (3+1)(1 - 1) - ((0-1) + \cdots) = 4$$

Tropical Weierstrass Weights

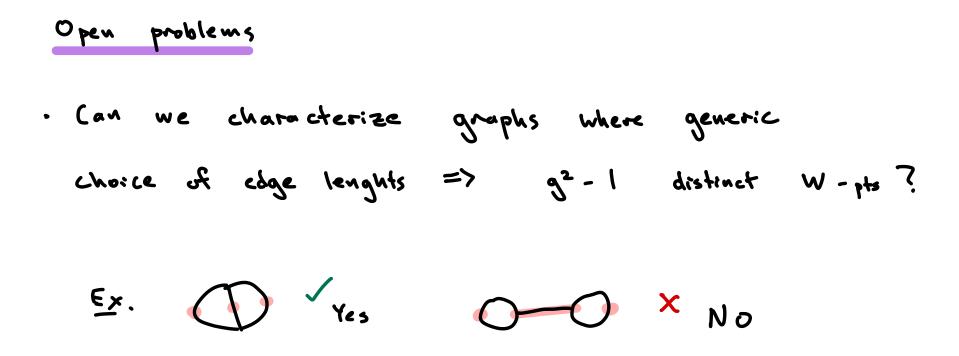
$$w(A) = (q+1)(q(A) - 1) - \sum_{v \in \partial A} (s_{o}^{v}(K) - 1)$$

Ex. If
$$A = \{x\}$$
, single porat, then
 $w(x) = D_x(x) - g + 1$
 G reduced divisor

$$E_{X}$$
. If $A = \Gamma$, $w(\Gamma) = (q+1)(q-1) = q^2 - 1^*$

* Recall earlies : total weight 3³-9

Theorem (AGR) If X tropicalizes to
$$\Gamma$$
, then
 $w(A) = \frac{1}{3} \cdot \left(\text{total Weierstrass weight of} \right)$
 $x \in X$ tropicalizing to A



· Can we characterize unit-edge-length graphs whose vertices are all non-Weierstrass pts ?

