Weights of tropical Weierstrass points

12 March 2025 Informal Tropical Geometry, Taipei

Harry Richman, NCTS

joint w/ Omid Amini & Lucas Gierczak

Frolé Polytechnique Marseille

Goal: understand moduli space of algebraic curves My

Goal: understand moduli space of algebraic curves Ma

- · Homology groups HK (Mg)?
- · Rational parametrization : 3 A"->> Mg?

· 3 X C Mg
complete subvariety
of given dim?

Goal: understand moduli space of algebraic curves Ma

Slogani Weierstmes pts are coordinates on Mg"

Goal: understand moduli space of algebraic curves Ma

Slogani Weierstmes ple are coordinates on Mg"

Problem: How do Weierstrass points behave on boundary of Mg?

Problem: How do Weierstrass points behave on boundary of Mg?

What are Weierstrass points? (Buckground)

Recall: first-year calculus, inflection point of a graph

· "concavity changes sign" Inflection?

> · tangent line intersects graph w/ multiplicity > 3

What are Weierstrass points? (Background)

Recall: first-year calculus, inflection point of a graph

Recall: first-year calculus, inflection point of a graph

Fact: If polynomial f(x) has degree d,

$$y = f(x)$$
 has $d-2^{*}$ inflection pts

* counted w/ multiplicity

X an alg. curve of genus g ≥ 2

Defin. Weierstrass points of X are inflection pts of canonical embedding $X \rightarrow \mathbb{P}^{g-1}$

$$S = 3$$

$$144 (x^{4}+y^{4}) - 225 (x^{2}+y^{2})$$

$$+ 350 x^{2}y^{2} + 81 = 0$$
"Trott curve"
via Wikipedia

Q: How many inflection pts?

X an alg. curve of genus g ≥ 2

Defin. Weierstrass points of X are inflection pts of canonical embedding $X \rightarrow \mathbb{P}^{g-1}$

$$144 (x4 + y4) - 225 (x2 + y2)$$

$$+ 350 x2 y2 + 81 = 0$$

Fact: generic alg. curve has $g^3 - g$ distinct Weierstrass pts

X an alg. curve of genus g ≥ 2

Defin. Weierstrass points of X are inflection pts of canonical embedding $X \rightarrow \mathbb{P}^{g-1}$

Divisor theory

Defin x ex is a Weierstrass point if

tropical

. 3 hyperplane H c P9-1 with H n x 2 g. x

· 7 effective divisor D~K with D≥g·x

Weierstrass weights

Sometimes Weierstrass points "collide".

Defin (Informal) Weierstrass Weight tracks # of

W-pts on nearby generic curve.

Weierstrass weights

May

Defin. (Formal, sketch) Weierstrass weight of x eX

is computed by taking derivatives; in the
"Wronskian."

* NOT tropical :

algebraic
curves

Tropicalize!

metric graphs

Tropical Weierstrass points

Recall :

Ex.

Tropical Weierstrass points

To metric graph of genus g

Defin x ET is a (tropical) Weierstress point if

· exists effective divisor D~K with D≥g·x

(=> exists f & Rat(K) with zeros(f) ≥ g.x

Ex.

Tropical Weierstrass points To metric graph of genus g Defin x ET is a (tropical) Weierstress point if · exists effective divisor D~K with D≥g·x (=> exists f & Rat(K) with zeros(f) ≥ q.x Ex. More examples on Computer

Problem. What is "good" notion of tropical weight?

Fact. Tropical Weierstrass locus can be infinite, containing positive-length segments

Problem. What is "good" notion of tropical weight?

Fact. Tropical Weierstrass locus can be infinite, containing positive-length segments

To metric graph of genus g

Defin. (AGR) The Weierstrass weight of a closed,

connected subset ACT is

$$W(A) = (g+1)(g(A)-1) - \sum_{v \in JA}(s_{o}^{v}(K)-1)$$

where . 2 = genus of graph

· g(A) = genus & subset

· 2A = outgoing directions from A

• $s_{o}^{v}(K) = minimal slope along direction v$ in Rat(K)

Compute via

$$w(A) = (g+1)(g(A)-1) - \sum_{v \in 2A} (s_v^v(K)-1)$$

Ex.

. 210be combntation

Ex.

$$w(A) = (3+1)(1-1) - ((0-1)+...) = 4$$

$$W(A) = (g+1)(g(A)-1) - \sum_{v \in JA}(s_{o}^{v}(K)-1)$$

Tropical Weierstrass weights w(A) = (5+1)(5(A)-1) - [(50(K)-1)

Theorem (AGR) If X tropicalizes to Γ , then $w(A) = \frac{1}{9} \cdot \begin{pmatrix} \text{total Weierstrass weight of} \\ \times \epsilon \times & \text{tropicalizing to } A \end{pmatrix}$

Cor. Total Weierstrass weight A trop'(A)" is a multiple of g.

Cor. If A contains a cycle (3(A) 21) then at least one Weierstans pt tropicalizes to A.

+ IF A is Lw-mond

Open problems

· (an we characterize graphs where generic choice of coope lengths => g^2-1 distinct W-pts?

Ex. Yes No

Open problems

· Can we characterize unit-edge-length graphs whose vertices are all non-Weierstrass pts?

Yes, Yes

Weights of tropical

Weierstrass points

Thanks for listening!